Chapter published in:
How the Brain Got Language – Towards a New Road Map
Edited by Michael A. Arbib
[Benjamins Current Topics 112] 2020
► pp. 5469
References

References

Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knosche, T. R.
(2007) Connectivity-Based Parcellation of Broca’s Area. Cereb Cortex, 17(4), 816–825. CrossrefGoogle Scholar
Arbib, M.
(2012) How the Brain Got Language: Oxford University Press. CrossrefGoogle Scholar
Baldwin, J. Mark
(1896) A New Factor in Evolution. The American Naturalist, 30(354), 441–451.CrossrefGoogle Scholar
Bateson, P.
(2004) The active role of behaviour in evolution. Biol Phi/as, 19(2), 283–298. CrossrefGoogle Scholar
Bogin, B.
(1997) Evolutionary Hypotheses for Human Childhood. Yearbook of Physical Anthropology, 40, 63–89 CrossrefGoogle Scholar
Buckner, R. L., & Krienen, F. M.
(2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci, 17(12), 648–665. CrossrefGoogle Scholar
Byrne, R. W., Hobaiter, C., & Klailova, M.
(2011) Local traditions in gorilla manual skill: evidence for observational learning of behavioral organization. Anim Cogn, 14(5), 683–693. CrossrefGoogle Scholar
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B.
(2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167. Crossref[ p. 66 ]Google Scholar
Chartrand, T. L., & Bargh, J. A.
(1999) The chameleon effect: the perception-behavior link and social interaction. J Pers Soc Psycho/, 76(6), 893–910. CrossrefGoogle Scholar
Denys, K., Vanduffel, W., Fize, O., Nelissen, K., Sawamura, H., Georgieva, S., … Orban, G. A.
(2004) Visual activation in prefrontal cortex is stronger in monkeys than in humans. J Cogn Neurosci, 16(9), 1505–1516. CrossrefGoogle Scholar
Finlay, B. L., Hinz, F., & Darlington, R. B.
(2011) Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species. Phi/as Trans R Soc Land B Biol Sci, 366(1574), 2111–2123. CrossrefGoogle Scholar
Fitch, W. T., Huber, L., & Bugnyar, T.
(2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron, 65(6), 795–814. CrossrefGoogle Scholar
Flechsig, P. E.
(1920) Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Grundlage. G. Thieme (in German).Google Scholar
Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T.
(2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Res Cogn Brain Res, 23(2–3), 397–405. CrossrefGoogle Scholar
Galaburda, A. M., Rosen, G. D., & Sherman, G. F.
(1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsycho/ogia, 28(6), 529–546. CrossrefGoogle Scholar
Gomez-Robles, A., Hopkins, W. D., Schapiro, S. J., & Sherwood, C. C.
(2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A, 112(48), 14799–14804. CrossrefGoogle Scholar
Gomez-Robles, A., Hopkins, W. D., & Sherwood, C. C.
(2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc Biol Sci, 280(1761), 20130575. CrossrefGoogle Scholar
(2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun, 5, 4469. CrossrefGoogle Scholar
Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., … Groves, C. P.
(1998) Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol, 9(3), 585–598. CrossrefGoogle Scholar
Greenfield, P. M.
(1991) Language, tools, and brain: the development and evolution of hierarchically organized sequential behavior. Behav. Brain Sci., 14, 531–595. CrossrefGoogle Scholar
Gruber, T., Singleton, I., & van Schaik, C.
(2012) Sumatran orangutans differ in their cultural knowledge but not in their cognitive abilities. Curr Biol, 22(23), 2231–2235. CrossrefGoogle Scholar
Hayes, K. J., & Hayes, C.
(1952) Imitation in a home-raised chimpanzee. J Comp Physio/ Psycho/, 45(5), 450–459. CrossrefGoogle Scholar
Hecht, E.
(2016) Adaptations to vision-for-action in primate brain evolution: Comment on “Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain” by Michael A. Arbib. Phys Life Rev, 16, 74–76.[ p. 67 ] CrossrefGoogle Scholar
Hecht, E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D.
(2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 108, 124–137.CrossrefGoogle Scholar
Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D.
(2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 108, 124–137. CrossrefGoogle Scholar
Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., … Stout, D.
(2015) Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct, 220(4), 2315–2331. CrossrefGoogle Scholar
Hecht, E. E., Gutman, D. A., Preuss, T. M., Sanchez, M. M., Parr, L. A., & Rilling, J. K.
(2013) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cereb Cortex, 23(5), 1014–1024. CrossrefGoogle Scholar
Hecht, E. E., Murphy, L. E., Gutman, D. A., Votaw, J. R., Schuster, D. M., Preuss, T. M., … Parr, L. A.
(2013) Differences in neural activation for object-directed grasping in chimpanzees and humans. J Neurosci, 33(35), 14117–14134.CrossrefGoogle Scholar
Hill, J., lnder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D.
(2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci US A, 107(29), 13135–13140. CrossrefGoogle Scholar
Hopkins, W. D., Russell, J. L., & Cantalupo, C.
(2007) Neuroanatomical correlates of handedness for tool use in chimpanzees (Pan troglodytes): implication for theories on the evolution of language. Psycho/ Sci, 18(11), 971–977. CrossrefGoogle Scholar
Horner, V., & Whiten, A.
(2005) Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Anim Cogn, 8(3), 164–181. CrossrefGoogle Scholar
Inoue-Nakamura, N., & Matsuzawa, T.
(1997) Development of stone tool use by wild chimpanzees (Pan troglodytes). J Comp Psycho/, 111(2), 159–173. CrossrefGoogle Scholar
Kaas, J. H.
(2012) The evolution of neocortex in primates. Prag Brain Res, 195, 91–102. CrossrefGoogle Scholar
Kanai, R., Dong, M. Y., Bahrami, B., & Rees, G.
(2011) Distractibility in daily life is reflected in the structure and function of human parietal cortex. J Neurosci, 31(18), 6620–6626.CrossrefGoogle Scholar
Kaneko, T., & Tomonaga, M.
(2012) Relative contributions of goal representation and kinematic information to self-monitoring by chimpanzees and humans. Cognition, 125(2), 168–178. CrossrefGoogle Scholar
Human-specific transcriptional networks in the brain
. Neuron, 75(4), 601–617. Crossref
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N.
(2009) Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930. CrossrefGoogle Scholar
Marshall-Pescini, S., & Whiten, A.
(2008) Chimpanzees (Pan troglodytes) and the question of cumulative culture: an experimental approach. Anim Cogn, 11(3), 449–456. CrossrefGoogle Scholar
Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., … Sherwood, C. C.
(2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci US A, 109(41), 16480–16485. Crossref[ p. 68 ]Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B.
(2009) Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci Biobehav Rev, 33(7), 975–980. CrossrefGoogle Scholar
Ojemann, G. A.
(1991) Cortical organization of language. J Neurosci, 11(8), 2281–2287. CrossrefGoogle Scholar
Osborn, H. F.
(1896) A mode of evolution requiring neither natural selection nor the inheritance of acquired characters. Transactions of the New York Academy of Sciences, 15, 141–148.Google Scholar
Paukner, A., Suomi, S. J., Visalberghi, E., & Ferrari, P. F.
(2009) Capuchin monkeys display affiliation toward humans who imitate them. Science, 325(5942), 880–883. CrossrefGoogle Scholar
Peeters, R., Simone, L., Nelissen, K., Fabbri-Destro, M., Vanduffel, W., Rizzolatti, G., & Orban, G. A.
(2009) The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci, 29(37), 11523–11539.CrossrefGoogle Scholar
Petrides, M.
(2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Land B Biol Sci, 360(1456), 781–795. CrossrefGoogle Scholar
Petrides, M., & Pandya, D. N.
(2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci, 16(2), 291–310. CrossrefGoogle Scholar
(2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol, 7(8), e1000170. CrossrefGoogle Scholar
Preuss, T. M., Caceres, M., Oldham, M. C., & Geschwind, D. H.
(2004) Human brain evolution: insights from microarrays. Nat Rev Genet, 5(11), 850–860. CrossrefGoogle Scholar
Pulvermuller, F., & Fadiga, L.
(2010) Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci, 11(5), 351–360. CrossrefGoogle Scholar
Raos, V., Evangeliou, M. N., & Savaki, H. E.
(2004) Observation of action: grasping with the mind’s hand. Neuroimage, 23(1), 193–201. CrossrefGoogle Scholar
(2007) Mental simulation of action in the service of action perception. J Neurosci, 27(46), 12675–12683.CrossrefGoogle Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L.
(1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 3(2), 131–141. CrossrefGoogle Scholar
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Stadler, A., Ronen, A., & Nevo, E.
(2015) Preparation and use of varied natural tools for extractive foraging by bonobos (Pan Paniscus). Am J Phys Anthropol, 158(1), 78–91. CrossrefGoogle Scholar
Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., & Luppino, G.
(2006) Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex, 16(10), 1389–1417. CrossrefGoogle Scholar
Ryan, S., Bonilha, L., & Jackson, S. R.
(2006) Individual variation in the location of the parietal eye fields: a TMS study. Exp Brain Res, 173(3), 389–394. CrossrefGoogle Scholar
Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., & Semendeferi, K.
(2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neural, 510(1), 117–128. Crossref[ p. 69 ]Google Scholar
Sclafani, V., Paukner, A., Suomi, S. J., & Ferrari, P. F.
(2015) Imitation promotes affiliation in infant macaques at risk for impaired social behaviors. Dev Sci, 18(4), 614–621. CrossrefGoogle Scholar
Stout, D., & Chaminade, T.
(2012) Stone tools, language and the brain in human evolution. Philos Trans R Soc Land B Biol Sci, 367(1585), 75–87. CrossrefGoogle Scholar
Stout, D., Passingham, R., Frith, C., Apel, J., & Chaminade, T.
(2011) Technology, expertise and social cognition in human evolution. Eur J Neurosci, 33(7), 1328–1338. CrossrefGoogle Scholar
Stout, D., Toth, N., Schick, K., & Chaminade, T.
(2008) Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Land B Biol Sci, 363(1499), 1939–1949. CrossrefGoogle Scholar
Sussman, R. W., Tab Rasmussen, D., & Raven, P. H.
(2013) Rethinking primate origins again. Am J Primato/, 75(2), 95–106. CrossrefGoogle Scholar
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G.
(2001) I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165. Crossref [pii]Google Scholar
van Schaik, C. P., Deaner, R. O., & Merrill, M. Y.
(1999) The conditions for tool use in primates: implications for the evolution of material culture. J Hum Evol, 36(6), 719–741. CrossrefGoogle Scholar
Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J. T., & Orban, G. A.
(2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 298(5592), 413–415. CrossrefGoogle Scholar
Visalberghi, E., & Fragaszy, D. M.
(2002) “Do Monkeys Ape?” Ten Years After. In C. N. K. Dautenhahn (Ed.), Imitation in animals and artefacts (pp. 471–499). Cambridge, MA: MIT Press.Google Scholar
Weber, Bruce H., & Depew, David J.
(Eds.) (2003) Evolution and learning: the Baldwin effect reconsidered. Cambridge, Mass.: MIT Press.Google Scholar
Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M.
(2009) Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc Lond B Biol Sci, 364(1528), 2417–2428. CrossrefGoogle Scholar
Yakovlev, P. I., & Lecours, A. R.
(1966) The myelinogenic cycles of regional maturation of the brain. In A. Minkovski (Ed.), Regional Development of the Brain in Early Life (pp. 3–70). Oxford, UK: Blackwell.Google Scholar
Zhong, Y. M., & Rockland, K. S.
(2003) Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey. Cereb Cortex, 13(5), 527–540. CrossrefGoogle Scholar