References

References

Anthony, J. L., Lonigan, C. J., Driscoll, K., Phillips, B. M., & Burgess, S. R.
(2003) Phonological sensitivity: A quasi-parallel progression of word structure units and cognitive operations. Reading Research Quarterly, 38, 470–487. CrossrefGoogle Scholar
Aylward, E. H., Richards, T. L., Berninger, V. W., Nagy, W. E., Field, K. M., Grimme, A. C., Richards, A. L., Thomson, J. B., & Cramer, S. C.
(2003) Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61(2), 212–219. CrossrefGoogle Scholar
Berninger, V. W., Lee, Y. L., Abbott, R. D., & Breznitz, Z.
(2013) Teaching children with dyslexia to spell in a reading-writers’ workshop. Annals of Dyslexia, 63(1), 1–24. CrossrefGoogle Scholar
Berninger, V. W., Winn, W. D., Stock, P., Abbott, R.D., Eschen, K., Lin, S. J., Garcia, N., Anderson-Youngstrom, M., Murphy, H., Lovitt, D., Trivedi, P., Jones, J., Amtmann, D., & Nagy, W.
(2008) Tier 3 specialized writing instruction for students with dyslexia. Reading and Writing, 21, 95–129. CrossrefGoogle Scholar
Bolger, D., Hornickel, J., Cone, N., Burman, D., & Booth, J.
(2008) Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29, 1416–1429. CrossrefGoogle Scholar
Bolger, D. J., Perfetti, C. A., & Schneider, W.
(2005) Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25(1), 92–104. CrossrefGoogle Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. R., & Mesulam, M. M.
(2002) Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage, 16, 7–22. CrossrefGoogle Scholar
(2003) The relation between brain activation and lexical performance. Human Brain Mapping, 19, 155–169. CrossrefGoogle Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Trommer, B. L., Davenport, N., Parrish, T. R., Gitelman, D. R., & Mesulam, M. M.
(2004) Brain-behavior correlation in children depends on the neuro-cognitive network. Human Brain Mapping, 23, 99–108. CrossrefGoogle Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Zhang, L., Choy, J., Gitelman, D. R., Parrish, T. R. & Mesulam, M. M.
(2003) Modality-specific and -independent developmental differences in the neural substrate for lexical processing. Journal of Neurolinguistics, 16, 383–405. CrossrefGoogle Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Zhang, L.,, Gitelman, D. R., Parrish, T. R. & Mesulam, M. M.
(2004) Development of brain mechanisms for processing orthographic and phonological representations. Journal of Cognitive Neuroscience, 16, 1234–1249. CrossrefGoogle Scholar
Bradley, L.
(1981) The organisation of motor patterns for spelling: An effective remedial strategy for backward readers. Develop Med Child Neurol, 23, 83–91. CrossrefGoogle Scholar
Bradley, L., & Bryant, P. E.
(1983) Categorizing sounds and learning to read-a causal connection. Nature, 301, 419–421. CrossrefGoogle Scholar
Brennan, C., Cao, F., Pedroarena-Leal, N., McNorgan, C. & Booth, J. R.
(2013) Reading acquisition reorganizes the phonological awareness network only in alphabetic writing systems. Hum Brain Mapp, 34(12), 3354–3368. CrossrefGoogle Scholar
Broom, Y. M., & Doctor, E. A.
(1995) Developmental surface dyslexia: A case study of the efficacy of a remediation programme. Cognitive Neuropsychology, 12, 69–110. CrossrefGoogle Scholar
Byrne, B., & Fielding-Barnsley, R.
(1989) Phonemic awareness and letter knowledge in the childʹs acquisition of the alphabetic principle. Journal of Educational Psychology, 81, 313–321. CrossrefGoogle Scholar
Byrne, B., Freebody, P., & Gates, A.
(1992) Longitudinal data on the relations of word-reading strategies to comprehension, reading time, and phonemic awareness. Reading Research Quarterly, 27, 140–151. CrossrefGoogle Scholar
Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R.
(2006) Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology & Psychiatry, 47(10), 1041–1050. CrossrefGoogle Scholar
Cao, F., Brennan, C., & Booth, J. R.
(2015) The brain adapts to orthography with experience: Evidence from English and Chinese. Dev Sci, 18(5), 785–798. CrossrefGoogle Scholar
Cao, F., Khalid, K., Lee, R., Brennan, C., Yang, Y., Li, K., Bolger, D. J., & Booth, J. R.
(2011) Development of brain networks involved in spoken word processing of Mandarin Chinese. Neuroimage, 57(3), 750–759. CrossrefGoogle Scholar
Cao, F., Kim, S. Y., Liu, Y., & Liu, L.
(2014) Similarities and differences in brain activation and functional connectivity in first and second language reading: Evidence from Chinese learners of English. Neuropsychologia, 63, 275–284. CrossrefGoogle Scholar
Cao, F., Lee, R., Shu, H., Yang, Y., Xu, G., Li, K., & Booth, J. R.
(2010) Cultural constraints on brain development: Evidence from a developmental study of visual word processing in Mandarin Chinese. Cereb Cortex, 20(5), 1223–1233. CrossrefGoogle Scholar
Cao, F., Peng, D., Liu, L., Jin, Z., Fan, N., Deng, Y., & Booth, J. R.
(2009) Developmental differences of neurocognitive networks for phonological and semantic processing in Chinese word reading. Human Brain Mapping, 30(3), 797–809. CrossrefGoogle Scholar
Cao, F., Rickles, B., Vu, M., Zhu, Z., Chan, D. H., Harris, L. N., Stafura, Xu, Y., & Perfetti, C. A.
(2013) Early stage visual-orthographic processes predict long-term retention of word form and meaning: A visual encoding training study. J Neurolinguistics 26(4), 440–461. CrossrefGoogle Scholar
Cao, F., Sussman, B., Rios, V., Yan, X., Spray, G., Wang, Z., & Mack, R.
(in press). Different brain mechanisms involved in learning different L2s: Evidence from native English speakers learning Spanish and Chinese. Neuroimage.
Cao, F., Tao, R., Liu, L., Perfetti, C. A., & Booth, J. R.
(2013) High proficiency in a second language is characterized by greater involvement of the first language network: Evidence from Chinese learners of English. J Cogn Neurosci, 25(10), 1649–1663. CrossrefGoogle Scholar
Cao, F., Vu, M., Chan, D. H., Lawrence, J. M., Harris, L. N., Guan, Q., Xu, Y., & Perfetti, C. A.
(2013) Writing affects the brain network of reading in Chinese: A functional magnetic resonance imaging study. Human Brain Mapping, 34(7), 1670–1684. CrossrefGoogle Scholar
Cao, F., Yan, X., Wang, Z., Liu, Y., Wang, J., Spray, G., & Deng, Y.
(2017) Neural signatures of phonological deficits in developmental dyslexia. NeuroImage.Google Scholar
Chee, M. W., Caplan, D., Soon, C. S., Sriram, N., Tan, E. W., Thiel, T., & Weekes, B.
(1999) Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron, 23(1): 127–137. CrossrefGoogle Scholar
Chen, Y., Fu, S., Iversen, S. D., Smith, S. M., & Matthews, P. M.
(2002) Testing for dual brain processing routes in reading: A direct contrast of chinese character and pinyin reading using FMRI. Journal of Cognitive Neuroscience, 14(7): 1088–1098. CrossrefGoogle Scholar
Coltheart, M., Curtis, B., Atkins, P., & Haller, M.
(1993) Models of reading aloud: Dual route and parallel distributed processing approaches. Psychological Review, 100, 589–608. CrossrefGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, C., & Ziegler, J.
(2001) DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. CrossrefGoogle Scholar
Cunningham, A. E., & Stanovich, K. E.
(1990) Assessing print exposure and orthographic processing skill in children: A quick measure of reading experience. Journal of Educational Psychology, 82, 733–740. CrossrefGoogle Scholar
De Gelder, B. V., & Vroomen, J.
(1992) Auditory and visual speech perception in alphabetic and nonalphabetic Chinese-Dutch bilinguals. In R. J. Harris (Ed.), Cognitive processing in bilinguals (pp. 413–426). Amsterdam: North-Holland. CrossrefGoogle Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L.
(2010) How learning to read changes the cortical networks for vision and language. Science, 330(6009): 1359–1364. CrossrefGoogle Scholar
Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., Dietz, N. A., Agnew, J. A., & Flowers, D. L.
(2004) Neural changes following remediation in adult developmental dyslexia. Neuron, 44(3), 411–422. CrossrefGoogle Scholar
Ehri, L. C., Nunes, S. R., Willows, D. A., Schuster, B. V., Yaghoub-Zadeh, Z., & Shanahan, T.
(2001) Phonemic awareness instruction helps children learn to read: Evidence from the National Reading Panelʹs metanalaysis. Reading Research Quarterly, 36, 250–287. CrossrefGoogle Scholar
Fiez, J. A., & Petersen, S. E.
(1998) Neuroimaging studies of word reading. Proc Natl Acad Sci U S A, 95(3), 914–21. CrossrefGoogle Scholar
Frith, U.
(1986) A developmental framework for developmental dyslexia. Annals of Dyslexia, 36, 69–81. CrossrefGoogle Scholar
Gebauer, D., Fink, A., Kargl, R., Reishofer, G., Koschutnig, K., Purgstaller, C., Fazekas, F., & Enzinger, C.
(2012) Differences in brain function and changes with intervention in children with poor spelling and reading abilities. PLoS One, 7(5): e38201. CrossrefGoogle Scholar
Gillingham, A., & Stillman, B. W.
(1956) Remedial training for children with specific disability in reading, spelling and penmanship (5th ed.). Cambridge, MA: Educators Publishing Service.Google Scholar
Goswami, U.
(1993) Phonological skills and learning to read. Ann N Y Acad Sci, 682, 296–311. CrossrefGoogle Scholar
Guan, Q., Liu, Y., Chan, H., & Perfetti, C. A.
(2011) Writing strengthens orthography and alphabetic-coding strengthens phonology in learning to read Chinese. Journal of Educational Psychology, 103(3): 509–522. CrossrefGoogle Scholar
Gustafson, S., Ferreira, J., & Ronnberg, J.
(2007) Phonological or orthographic training for children with phonological or orthographic decoding deficits. Dyslexia, 13(3), 211–229. CrossrefGoogle Scholar
Hu, W., Lee, H. L., Zhang, Q., Liu, T., Geng, L. B., Seghier, M. L., Shakeshaft, C., Twomey, T., Green, D. W., Yang, W. M., & Price, C. J.
(2010) Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain, 133(Pt 6), 1694–1706. CrossrefGoogle Scholar
Jamal, N. I., Piche, A. W., Napoliello, E. M., Perfetti, C. A., & Eden, G. F.
(2012) Neural basis of single-word reading in Spanish-English bilinguals. Human Brain Mapping, 33(1), 235–245. CrossrefGoogle Scholar
James, K. H.
(2010) Sensori-motor experience leads to changes in visual processing in the developing brain. Dev Sci, 13(2), 279–288. CrossrefGoogle Scholar
James, K. H., & Atwood, T. P.
(2009) The role of sensorimotor learning in the perception of letter-like forms: Tracking the causes of neural specialization for letters. Cogn Neuropsychol, 26(1), 91–110. CrossrefGoogle Scholar
James, K. H., & Gauthier, I.
(2006) Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia, 44(14), 2937–2949. CrossrefGoogle Scholar
Jeong, H., Sugiura, M., Sassa, Y., Yokoyama, A., Horie, K., Sato, S., Taira, M., & Kawashima, R.
(2007) Cross-linguistic influence on brain activation during second language processing: An fMRI study. Bilingualism: Language and Cognition, 10(2), 175–187. CrossrefGoogle Scholar
Jobard, G., Crivello, F., & Tzourio-Mazoyer, N.
(2003) Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage, 20(2), 693–712. CrossrefGoogle Scholar
Johnson, M. H.
(2011) Interactive specialization: A domain-general framework for human functional brain development? Dev Cogn Neurosci, 1(1), 7–21. CrossrefGoogle Scholar
Kaushanskaya, M., Yoo J., & Marian, V.
(2011) The effect of second-language experience on native-language processing. Vigo Int J Appl Linguist, 8, 54–77.Google Scholar
Keller, T. A., & Just, M. A.
(2009) Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64(5), 624–631. CrossrefGoogle Scholar
Kim, S. Y., Liu, L., & Cao, F.
(2017) “How does first language (L1) influence second language (L2) reading in the brain? Evidence from Korean-English and Chinese-English bilinguals.”Brain Lang 171: 1–13.Google Scholar
Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao
(2016) How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean-Chinese-English trilinguals. Neuroimage, 129, 25–39.Google Scholar
Kita, Y., Yamamoto, H., Oba, K., Terasawa, Y., Moriguchi, Y., Uchiyama, H., Seki, A., Koeda, T., & Inagaki, M.
(2013) Altered brain activity for phonological manipulation in dyslexic Japanese children. Brain, 136(Pt 12), 3696–3708. CrossrefGoogle Scholar
Koyama, M. S., Stein, J. F., Stoodley, C. J., & Hansen, P. C.
(2011) Functional MRI evidence for the importance of visual short-term memory in logographic reading. Eur J Neurosci, 33(3), 539–548. CrossrefGoogle Scholar
Kumar, U.
(2014) Effect of orthography over neural regions in bilinguals: A view from neuroimaging. Neurosci Lett, 580C, 94–99. CrossrefGoogle Scholar
Liu, H., & Cao, F.
(2016) L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain Lang, 159, 60–73.Google Scholar
Liu, L., Wang, W., You, W., Li, Y., Awati, N., Zhao, X., Booth, J. R., & Peng, D.
(2012) Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia. Neuropsychologia, 50(9), 2224–2232. CrossrefGoogle Scholar
Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L.
(2003) Visual presentation of single letters activates a premotor area involved in writing. Neuroimage, 19(4), 1492–1500. CrossrefGoogle Scholar
Longcamp, M., Zerbato-Poudou, M. T., & Velay, J. L.
(2005) The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychol (Amst), 119(1), 67–79. CrossrefGoogle Scholar
Luke, K. K., Liu, H. L., Wai, Y. Y., Wan, Y. L., & Tan, L. H.
(2002) Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16, 133–145. CrossrefGoogle Scholar
McBride-Chang, C., Cho, J., Liu, H., Wagner, R., Shu, H., Zhou, A., Cheuk, C., & Muse, A.
(2005) Changing models across cultures: Associations of phonological awareness and morphological structure awareness with vocabulary and word recognition in second graders from Beijing, Hong Kong, Korea, and the United States. J Exp Child Psychol, 92(2), 140–160. CrossrefGoogle Scholar
McBride-Chang, C., Chow, B. W.-Y., Zhong, Y.-P., Burgess, S., & Hayward, W.
(2005) Chinese character acquisition and visual skills in two Chinese scripts. Reading and Writing: An Interdisciplinary Journal, 18, 99–128. CrossrefGoogle Scholar
McBride-Chang, C., & Kail, R. V.
(2002) Cross-cultural similarities in the predictors of reading acquisition. Child Development, 73(5), 1392–1407. CrossrefGoogle Scholar
Mei, L., Xue, G., Lu, Z. L., Chen, C., Wei, M., He, Q., & Dong, Q.
(2015) Long-term experience with Chinese language shapes the fusiform asymmetry of English reading. Neuroimage, 110, 3–10. CrossrefGoogle Scholar
Mei, L., Xue, G., Lu, Z. L., He, Q., Wei, M., Zhang, M., Dong, Q., & Chen, C.
(2015) Native language experience shapes neural basis of addressed and assembled phonologies. Neuroimage, 114, 38–48. CrossrefGoogle Scholar
Mei, L., Xue, G., Lu, Z. L., He, Q., Zhang, M., Wei, M., Xue, F., Chen, C., & Dong, Q.
(2014) Artificial language training reveals the neural substrates underlying addressed and assembled phonologies. PLoS One, 9(3), e93548. CrossrefGoogle Scholar
Mei, L., Xue, G., Lu, Z. L., He, Q., Zhang, M., Xue, F., Chen, C., & Dong, Q.
(2013) Orthographic transparency modulates the functional asymmetry in the fusiform cortex: An artificial language training study. Brain Lang, 125(2), 165–172. CrossrefGoogle Scholar
Muter, V., Hulme, C., Snowling, M., & Taylor, S.
(1997) Segmentation, not rhyming, predicts early progress in learning to read. Journal of Experimental Child Psychology, 65, 370–396. CrossrefGoogle Scholar
(1998) Segmentation, not rhyming, predicts early progress in learning to read. J Exp Child Psychol, 71(1), 3–27. CrossrefGoogle Scholar
Naka, M.
(1998) Repeated writing facilitates childrenʹs memory for pseudocharacters and foreign letters. Mem Cognit, 26(4), 804–809. CrossrefGoogle Scholar
Nelson, J. R., Liu, Y., Fiez, J., & Perfetti, C. A.
(2009) Assimilation and accommodation patterns in ventral occipitotemporal cortex in learning a second writing system. Human Brain Mapping, 30(3), 810–820. CrossrefGoogle Scholar
O’Brien, B. A., Wolf, M., Miller, L. T., Lovett, M. W., & Morris, R.
(2011) Orthographic processing efficiency in developmental dyslexia: An investigation of age and treatment factors at the sublexical level. Ann Dyslexia, 61(1), 111–135. CrossrefGoogle Scholar
Olson, R. K., Wise, B., Johnson, M. C., & Ring, J.
(1997) The etiology and remediation of phonologically based word recognition and spelling disabilities: Are phonological deficits the “hole” story? In B. Blackman (Ed.), Foundations of reading acquisition and dyslexia (pp. 305–316). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Pak, A., Cheng-Lai, A., Tso, I., Shu, H., Li, W., & Anderson, R. C.
(2005) Visual chunking skills of Hong Kong children. Reading and Writing, 18(5), 437–454. CrossrefGoogle Scholar
Paulesu, E., Demonet, J. F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N., Cappa, S. F., Cossu, G., Habib, M., Frith, C. D., & Frith, U.
(2001) Dyslexia: Cultural diversity and biological unity. Science, 291, 2165–2167. CrossrefGoogle Scholar
Paulesu, E., McCrory, E, Fazio, F, Menoncello, L., Brunswick, N., Cappa, S. F., Cotelli, M., Cossu, G., Corte, F., Lorusso, M., Pesenti, S., Gallagher, A., Perani, D., Price, C., Frith, C. D., & Frith, U.
(2000) A cultural effect on brain function. Nature Neuroscience, 3(1), 91–96. CrossrefGoogle Scholar
Peng, D., Guo, D. J., Zhang, S. L.
(1985) Access to the lexical information of Chinese characters during semantic judgment. Acta Psychologica Sinica, 3, 227–233.Google Scholar
Pennington, B. F., & Lefly, D. L.
(2001) Early reading development in children at family risk for dyslexia. Child Development, 72(3), 816–833. CrossrefGoogle Scholar
Perfetti, C. A.
(1984) Reading acquisition and beyond: Decoding includes cognition. American Journal of Education, 93, 40–60. CrossrefGoogle Scholar
Perfetti, C. A., & Liu, Y.
(2005) Orthography to phonology and meaning: Comparisons across and within writing systems. Reading and Writing, 18, 193–210. CrossrefGoogle Scholar
Perfetti, C. A., Liu, Y., Fiez, J., Nelson, J., Bolger, D. J., & Tan, L.-H.
(2007) Reading in two writing systems: Accommodation and assimilation in the brain’s reading network. Bilingualism: Language and Cognition, 10(2), 131–146. CrossrefGoogle Scholar
Perfetti, C. A., Liu, Y., & Tan, L. H.
(2005) The lexical constituency model: Some implications of research on Chinese for general theories of reading. Psychological Review, 112(1), 43–59. CrossrefGoogle Scholar
Perre, L., & Ziegler, J. C.
(2008) On-line activation of orthography in spoken word recognition. Brain Res, 1188, 132–138. CrossrefGoogle Scholar
Piaget, J.
(1983) Piagetʹs theory. In P. Mussen (Ed.), Handbook of child psychology (4th ed.). New York, NY: John Wiley & Sons.Google Scholar
Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee,, J. R., Shaywitz, S. E., & Shaywitz, B. A.
(2000) Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation & Developmental Disabilities Research Reviews, 6(3), 207–213. CrossrefGoogle Scholar
Rack, J. P., Snowling, M. J., & Olson, R. K.
(1992) The nonword reading deficit in developmental dyslexia: A review. Reading Research Quarterly, 27(1), 28–53. CrossrefGoogle Scholar
Ramus, F.
(2014) Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends Cogn Sci, 18(6), 275–275. CrossrefGoogle Scholar
Rayner, K., Foorman, B. R., Perfetti, C. A., Pesetsky, D., & Seidenberg, M. S.
(2001) How psychological science informs the teaching of reading. Psychological Science, 2(2 Suppl), 31–74.Google Scholar
Rumsey, J. M., Nace, K., Donohue, B., Wise, D., Maisog, J. M., & Andreason, P.
(1997) A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Arch Neurol, 54(5), 562–573. CrossrefGoogle Scholar
Schulz, E., Maurer, U., van der Mark, S., Bucher, K., Brem, S., Martin, E., & Brandeis, M.
(2009) Reading for meaning in dyslexic and young children: Distinct neural pathways but common endpoints. Neuropsychologia, 47(12), 2544–2557. CrossrefGoogle Scholar
Seki, K., Yajima, M., & Sugishita, M.
(1995) The efficacy of kinesthetic reading treatment for pure alexia. Neuropsychologia, 33(5), 595–609. CrossrefGoogle Scholar
Shankweiler, D., Crain, S., Brady, S., & Macaruso, P.
(1992) Identifying the causes of reading disability. In P. B. Gough & L. C. Ehri (Eds.), Reading acquisition (pp. 275-305). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Shankweiler, D., Crain, S., Katz, L., & Fowler, A. E.
(1995) Cognitive profiles of reading-disabled children: Comparison of language skills in phonology, morphology, and syntax. Psychological Science, 6(3), 149–156. CrossrefGoogle Scholar
Shaywitz, B., Shaywitz, S., Blackman, B., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, E., Constable, R. T., Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, R., & Gore, J. C.
(2004) Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926–933. CrossrefGoogle Scholar
Shaywitz, B. A., Skudlarski, P., Holahan, J. M., Marchione, K. E., Constable, R. T., Fulbright, R. K., Zelterman, D., Lacadie, C., & Shaywitz, S. E.
(2007) Age-related changes in reading systems of dyslexic children. Ann Neurol, 61(4), 363–370. CrossrefGoogle Scholar
Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., Shankweiler, D. P., Liberman, A. M., Skudlarski, P., Fletcher, J. M., Katz, L., Marchione, K. E., Lacadie, C., Gatenby, C., & Gore, J. C.
(1998) Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci U S A, 95(5), 2636–2641. CrossrefGoogle Scholar
Simos, P. G., Fletcher, J. M., Bergman, E., Breier, J. I., Foorman, B. R., Castillo, E. M., Davis, R. N., Fitzgerald, M., & Papanicolaou, A. C.
(2002) Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58(8), 1203–1213. CrossrefGoogle Scholar
Simos, P. G., Fletcher, J. M., Denton, C., Sarkari, S., Billingsley-Marshall, R., & Papanicolaou, A. C.
(2006) Magnetic source imaging studies of dyslexia interventions. Developmental Neuropsychology, 30(1), 591–611. CrossrefGoogle Scholar
Siok, W. T., & Fletcher, P.
(2001) The role of phonological awareness and visual-orthographic skills in Chinese reading acquisition. Developmental Psychology, 37(6), 886–899. CrossrefGoogle Scholar
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H.
(2004) Biological abnormality of impaired reading is constrained by culture. Nature, 431, 71–76. CrossrefGoogle Scholar
Siok, W. T., Spinks, J. A., Jin, Z., & Tan, L. H.
(2009) Developmental dyslexia is characterized by the co-existence of visuospatial and phonological disorders in Chinese children. Curr Biol, 19(19), R890–892. CrossrefGoogle Scholar
Snowling, M. J., Goulandris, N., Bowlby, M., & Howell, P.
(1986) Segmentation and speech perception in relation to reading skill: A developmental analysis. Journal of Experimental Child Psychology, 41(3), 489–507. CrossrefGoogle Scholar
Snowling, M. J.
(1980) The development of grapheme-phoneme correspondence in normal and dyslexic readers. J Exp Child Psychol, 29(2), 294–305. CrossrefGoogle Scholar
Snowling, M. J., & Hulme, C.
(2011) Evidence-based interventions for reading and language difficulties: Creating a virtuous circle. Br J Educ Psychol, 81(Pt 1), 1–23. CrossrefGoogle Scholar
Song, H., Zhang, H. C., & Shu, H.
(1995) Developmental changes in functions of orthography and phonology in Chinese reading. Acta Psychologica Sinica, 2, 139–144.Google Scholar
Stanovich, K. E., & West, R. F.
(1989) Exposure to print and orthographic processing. Reading Research Quarterly, 24, 402–433. CrossrefGoogle Scholar
Tan, L. H., Feng, C. M., Fox, P. T., & Gao, J.-H.
(2001) An fMRI study with written Chinese. Neuroreport: an International Journal for the Rapid Communication of Research in Neuroscience, 12(1), 83–88. CrossrefGoogle Scholar
Tan, L. H., Laird, A. R., Karl, L., & Fox, P. T.
(2005) Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25, 83–91. CrossrefGoogle Scholar
Tan, L. H., Liu, H. L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J. H.
(2001) The neural system underlying Chinese logograph reading. Neuroimage 13(5), 836–846. CrossrefGoogle Scholar
Tan, L. H., & Perfetti, C. A.
(1997) Visual Chinese character recognition: Does phonological information mediate access to meaning? Journal of Memory and Language, 37, 41–57. CrossrefGoogle Scholar
Tan, L. H., Spinks, J. A., Eden, G. F., Perfetti, C. A., & Siok, W. T.
(2005) Reading depends on writing, in Chinese. Proceedings of the National Academy of Sciences of the United States of America, 102, 8781–8785. CrossrefGoogle Scholar
Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J., Fox, P. T., Gao, J. H., & Kalogirou, E.
(2003) Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18(3), 158–166. CrossrefGoogle Scholar
Tan, L. H., Spinks, J. A., Gao, J. H., Liu, H. L., Perfetti, C. A., Xiong, J., Stofer, K. A., Pu, Y., Liu, Y., & Fox, P. T.
(2000) Brain activation in the processing of Chinese characters and words: A functional MRI study. Human Brain Mapping, 10(1), 16–27. CrossrefGoogle Scholar
Tanaka, H., Black, J. M., Hulme, C., Stanley, L. M., Kesler, S. R., Whitfield-Gabrieli, R., Reiss, A. L., Gabrieli, J. D., & Hoeft, F.
(2011) The brain basis of the phonological deficit in dyslexia is independent of IQ. Psychol Sci, 22(11), 1442–1451. CrossrefGoogle Scholar
Thomson, M. E.
(1991). The teaching of spelling using techniques of simultaneous oral spelling and visual inspection. London: Whurr.Google Scholar
Tokunaga, H., Nishikawa, T., Ikejiri, Y., Nakagawa, Y., Yasuno, F, Hashikawa, K., Nishimura, T., Sugita, Y. & Takeda, M.
(1999) Different neural substrates for Kanji and Kana writing: A PET study. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience, 10(16), 3315–3319. CrossrefGoogle Scholar
Torgesen, J. K., Alexander, A. W., Wagner, R. K., Rashotte, C. A., Voeller, K. K., & Conway, T.
(2001) Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. J Learn Disabil, 34(1), 33–58, 78. CrossrefGoogle Scholar
Turkeltaub, P. E., Flowers, D. L., Verbalis, A., Miranda, M., Gareau, L., & Eden, G. F.
(2004) The neural basis of hyperlexic reading: An FMRI case study. Neuron, 41(1), 11–25. CrossrefGoogle Scholar
Turkeltaub, P. E., Garaeu, L., Flowers, D. L., Zefirro, T. A., & Eden, G. F.
(2003) Development of the neural mechanisms for reading. Nature Neuroscience 6(6), 767–773. CrossrefGoogle Scholar
van der Mark, S., Bucher, K., Maurer, U., Schulz, E., Brem, S, Buckelmuller, J., Kronbichler, M., Loenneker, T., Klaver, P., Martin, E., & Brandeis, D.
(2009) Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. Neuroimage, 47(4), 1940–1949. CrossrefGoogle Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M.
(2004). Specific reading disability (dyslexia): what have we learned in the past four decades? J Child Psychol Psychiatry, 45(1), 2–40. CrossrefGoogle Scholar
Vellutino, F. R., Scanlon, D. M., & Sipay, E. R.
(1997) Toward distinguishing between cognitive and experiential deficits as primary sources of difficulty in learning to read: The importance of early intervention in diagnosing specific reading disability. In B. Blackman (Ed.), Foundations of reading acquistion and dyslexia (347–379). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Vellutino, F. R., Smith, H., Steger, J. A., & Kaman, M.
(1975) Reading disability: age differences and the perceptual-deficit hypothesis. Child Dev, 46(2), 487–493. CrossrefGoogle Scholar
Vellutino, F. R., Smith, H., Steger, & Kandel, G.
(1972) Reading disability: an investigation of the perceptual deficit hypothesis. Cortex, 8(1), 106–118. CrossrefGoogle Scholar
Wang, M., Koda, K., & Perfetti, C. A.
(2003) Alphabetic and nonalphabetic L1 effects in English word identification: A comparison of Korean and Chinese English L2 learners. Cognition, 87(2), 129–149. CrossrefGoogle Scholar
Wang, M., Perfetti, C. A., & Liu, Y.
(2005) Chinese-English biliteracy acquisition: Cross-language and writing system transfer. Cognition 97(1), 67–88. CrossrefGoogle Scholar
Wong, P. C., Perrachione, T. K., & Parrish, T. B.
(2007) Neural characteristics of successful and less successful speech and word learning in adults. Hum Brain Mapp, 28(10), 995–1006. CrossrefGoogle Scholar
Zhou X, M.-W. W.
(1999) “Phonology, orthography, and semantic activation in reading Chinese”. J Mem Lang, 41, 579–606. CrossrefGoogle Scholar
Ziegler, J. C., & Ferrand, L.
(1998) Orthography shapes the perception of speech: The consistency effect in auditory word recognition. Psychonomic Bulletin & Review 5(4): 683–689. CrossrefGoogle Scholar
Ziegler, J. C., & Goswami, U.
(2005) Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131(1), 3–29. CrossrefGoogle Scholar