Article published in:
Dutch Journal of Applied Linguistics
Vol. 9:1/2 (2020) ► pp. 7996
References
American Psychological Association
(2010) Publication manual of the American Psychological Association (6th ed.). Washington, DC: American Psychological Association.Google Scholar
Amrhein, V., Greenland, S., & McShane, B.
(2019) Retire statistical significance. Nature, 5671, 305–307. CrossrefGoogle Scholar
Bakan, D.
(1966) The test of significance in psychological research. Psychological Bulletin, 661, 423–437. CrossrefGoogle Scholar
Berger, O. J., & Sellke, T.
(1987) Testing a point null hypothesis: The irreconcilability of P Values and evidence. Journal of the American Statistical Association, 821, 112–122.Google Scholar
Berkson, J.
(1942) Tests of significance considered as evidence. Journal of the American Statistical Association, 371, 325–335. CrossrefGoogle Scholar
Calin-Jageman, R. J., & Cumming, G.
(2019a) The New Statistics for better science: Ask how much, how uncertain, and what else is known. The American Statistician, 701, 271–280. CrossrefGoogle Scholar
(2019b) Estimation for better inference in neuroscience. ENeuro, 61, 1–11. CrossrefGoogle Scholar
Carver, R. P.
(1978) The case against significance testing. Harvard Educational Review, 481, 378–399. CrossrefGoogle Scholar
Chambers, C.
(2018) The seven deadly sins of psychology. A manifesto for reforming the culture of scientific practice. Princeton/Oxford: Princeton University Press.Google Scholar
Cohen, J.
(1988) Statistical power analysis for the behavioral sciences (2nd edition). New York, NY: Academic Press.Google Scholar
(1994) The earth is round (p < .05). American Psychologist, 491, 997–1003. CrossrefGoogle Scholar
Cumming, G.
(2012) Understanding the New Statistics. Effect sizes, confidence intervals, and meta-analysis. New York/London: Routledge.Google Scholar
(2014) The New Statistics: Why and how. Psychological Science, 251, 7–29. CrossrefGoogle Scholar
Cumming, G. & Calin-Jageman, R. J.
(2017) Introduction to the New Statistics. Estimation, open science, & beyond. New York/London: Routledge.Google Scholar
Falk, R., & Greenbaum, C. W.
(1995) Significance tests die hard: The amazing persistence of a probabilistic misconception. Theory & Psychology, 51, 75–98. CrossrefGoogle Scholar
Field, A.
(2015) Discovering statistics using IBM SPSS Statistics (4th ed.). London: Sage.Google Scholar
Gigerenzer, G.
(2004) Mindless statistics. Journal of Socio-Economics, 331, 587–606. CrossrefGoogle Scholar
Gigerenzer, G., & Marewski, J. N.
(2015) Surrogate science: The idol of a universal method for scientific inference. Journal of Management, 411, 421–440. CrossrefGoogle Scholar
Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Kruger, L.
(1989) The Empire of Chance. Cambridge: Cambridge University Press. CrossrefGoogle Scholar
Hacking, I.
(1965) Logic of statistical inference. Cambridge: Cambridge University Press. CrossrefGoogle Scholar
Haller, H., & Krauss, S.
(2002) Misinterpretations of significance. A problem students share with their teachers? Methods of Psychological Research Online, 71, http://​www​.mpr​-online​.de
Hubbard, R.
(2004) Alfabet soup: Blurring the distinctions between p’s and α’s in psychological research. Theory &Psychology, 141, 295–327. CrossrefGoogle Scholar
Hubbard, R., & Lindsay, R. M.
(2008) Why P values are not a useful measure of evidence in statistical significance testing. Theory & Psychology, 181, 69–88. CrossrefGoogle Scholar
Kelley, K.
(2007) Methods for the behavioral, educational, and social sciences: An R package. Behavior Research Methods, 391, 979–384. CrossrefGoogle Scholar
Kline, R. B.
(2013) Beyond significance testing. Statistics reform in the behavioral sciences. Washington, DC: American Psychological Association. CrossrefGoogle Scholar
Kruschke, J. K.
(2015) Doing Bayesian data analysis. A tutorial with R, Jags, and Stan (2nd ed.). London: Academic Press.Google Scholar
Kruschke, J. K., & Liddell, T. M.
(2018) The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin Review, 251, 178–206. CrossrefGoogle Scholar
Lambdin, C.
(2012) Significance tests as sorcery: Science is empirical – significance tests are not. Theory & Psychology, 221, 67–90. CrossrefGoogle Scholar
Lindley, D. V.
(2000) The philosophy of statistics. The Statistician, 491, 293–337.Google Scholar
Ly, A., Raj, A., Etz, A., Marsman, M., Gronau, Q. F., & Wagenmakers, E. J.
(2018) Bayesian reanalyses from summary statistics: A guide for academic consumers. Advances in Methods and Practices in Psychological Science, 11, 367–374. CrossrefGoogle Scholar
Maxwell, S. E., Delaney, H. D., & Kelley, K.
(2017) Designing experiments and analyzing data. A model comparison perspective (3th ed.). New York, NY: Routledge. CrossrefGoogle Scholar
McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L.
(2019) Abandon statistical significance. The American Statistician, 731, 235–245. CrossrefGoogle Scholar
Meehl, P. E.
(1978) Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 461, 806–834. CrossrefGoogle Scholar
(1997) The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 393–425). Mahwah, NJ: Erlbaum.Google Scholar
Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J.
(2016) The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin Review, 231, 103–123. CrossrefGoogle Scholar
Mulder, G.
(2016) De kwaliteit van onderzoek. Dichotoom denken versus meta-analytisch denken. Tijdschrift voor Taalbeheersing, 381, 163–173. CrossrefGoogle Scholar
(2019) Een significant probleem. Tijdschrift voor Taalbeheersing, 411, 203–213. CrossrefGoogle Scholar
Neyman, J.
(1977) Frequentist probability and frequentist statistics. Synthese, 361, 97–131. CrossrefGoogle Scholar
Nickerson, R. S.
(2000) Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 51, 241–301. CrossrefGoogle Scholar
Norouzian, R., De Miranda, M., & Plonksy, L.
(2018) The Bayesian revolution in second language research: An applied approach. Language Learning, 681, 1032–1075. CrossrefGoogle Scholar
Oakes, M.
(1986) Statistical significance. New York, NY: Wiley.Google Scholar
Perezgonzalez, J. D.
(2015) Fisher, Neyman-Pearson, or NHST? A tutorial for teaching data testing. Frontiers in Psychology, 61, 1–11. CrossrefGoogle Scholar
Polya, G.
(1954) Mathematics and plausible reasoning, V1–2. Induction and analogy in mathematics, patterns of plausible inference. Princeton, NJ: Princeton University Press. CrossrefGoogle Scholar
Roozeboom, W. W.
(1960) The fallacy of the null-hypothesis significance test. Psychological Bulletin, 571, 416–428. CrossrefGoogle Scholar
Rosenthal, R., Rosnow, R. L., & Rubin, D. B.
(2000) Contrasts and effect sizes in behavioral research. A correlational approach. Cambridge, UK: Cambridge University Press.Google Scholar
Rouder, J. N., Speckman, P. L., Dongchu, S., Morey, R. D., & Iversen, G.
(2009) Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 161, 225–237. CrossrefGoogle Scholar
Schmidt, F. L.
(1996) Statistical significance and cumulative knowledge in psychology: Implications for the training of researchers. Psychological Methods, 11, 115–129. CrossrefGoogle Scholar
Van Hilten, M., & Van Vuuren, S.
(2017) Does it ‘feel’ non-native? Native-speaker perceptions of information-structural transfer in L1 Dutch advanced EFL writing. Dutch Journal of Applied Linguistics, 61, 197–212. CrossrefGoogle Scholar
Wasserstein, R. L., & Lazar, N.
(2016) The ASA’s statement on P-values: Context, process, and purpose. The American Statistician, 701, 129–133. CrossrefGoogle Scholar
Wasserstein, R. L., Schirm, A. L., & Lazar, N. A.
(2019) Moving to a world beyond “p < .05”. The American Statistician, 731, 1–19. CrossrefGoogle Scholar
Wiens, S., & Nilsson, M. E.
(2017) Performing contrast analysis in factorial designs: From NHST to confidence intervals and beyond. Educational and Psychological Measurement, 771, 690–715. CrossrefGoogle Scholar
Zilliak, S. T., & McClosky, D. N.
(2008) The cult of statistical significance. How the standard error costs us jobs, justice, and lives. Ann Arbor, MN: The University of Michigan Press.Google Scholar
The New Statistics for applied linguistics