A computational account of virtual travelers in the Montagovian generative lexicon
Richard Moot | LIRMM, Université de Montpellier, CNRS, Montpellier, France
This chapter deals with the automated formal analysis of a specfic interpretation of fictive motion named the “virtual traveler”, involved for instance in the French equivalents of a sentence like The path descends for two hours where it is possible that no-one actually descends. Our analysis in computational semantics yields the intended logical formula in the framework of the Discourse Representation Theory. It relies on a framework, the Montagovian Generative Lexicon that integrates lexical semantics into compositional semantics.
Article outline
- 1.Introduction
- 2.Lexical information and compositional semantics
- 3.Standard compositional semantics
- 3.1The Lambek calculus
- 3.2A semantic lexicon
- 3.3Semantic analysis
- 3.4Overall architecture
- 4.The Montagovian generative lexicon
- 4.1Principles of the lexicon
- 4.1.1Main or standard terms
- 4.1.2Optional morphisms of the terms
- 4.2Girard’s system F of type polymorphism
- 4.3Co-predication
- 4.3.1Polymorphic conjunction
- 4.3.2Rigid vs. flexible use of optional morphisms
- 4.4Standard behaviour
- 4.5Qualia exploitation
- 4.6Facets: Correct co-predication
- 4.7Applications
- 5.Fictive motion: Data, question and outline
- 5.1A case study and a field for semantic experiments
- 5.2A particular phenomenon: “fictive motion”
- 5.3Types and functions
- 5.4Semantics with λ-DRT
- 5.5Lexical coercions and fictive motion
- 6.Conclusion
-
Notes
-
References
References (33)
References
Asher, N., & Sablayrolles, P. (1995). A typology and discourse semantics for motion verbs and spatial PPs in French. Journal of Semantics, 12(2), 163–209.
Aurnague, M., & Vieu, L. (2013). Retour aux arguments: Pour un traitement “relationnel” des prépositions spatiales. Faits de Langues, 42, 17–38.
Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2), 159–219.
Bassac, C., Mery, B., & Retoré, C. (2010). Towards a type-theoretical account of lexical semantics. Journal of Logic, Language and Information, 19(2), 229–245.
Blomberg, J., & Zlatev, J. (2014). Actual and non-actual motion: Why experientialist semantics needs phenomenology (and vice versa). Phenomenology and the Cognitive Sciences, 13(3), 395–418.
Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2), 56–68.
Dalrymple, M., Lamping, J., Pereira, F. C. N., & Saraswat, V. A. (1995). Linear logic for meaning assembly. In S. Manandhar, G. Pereira Lopes, & W. Nutt (Eds.), Proceedings of Computational Logic for Natural Language Processing (pp. 75–93). Edinburgh.
Emms, M. (1993). Some applications of categorial polymorphism. In M. Moortgat (Ed.), Polymorphic Treatments, vol. R1.3.A of Dyana-2 Deliverable (pp. 1–52). ESPRIT BRA 6852.
Jackendoff, R. (1983). Semantics and cognition. Cambridge, MA: MIT Press.
Kamp, H., & Reyle, U. (1993). From discourse to logic. Dordrecht: Kluwer.
Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.
Langacker, R. W. (1986). Abstract motion. In Proceedings of the 12th Annual Meeting of the Berkeley Linguistics Society (pp. 455–471). Berkeley, CA: Berkeley Linguistics Society.
Langacker, R. W. (1999). Virtual reality. Studies in the Linguistic Sciences, 29, 77–103.
Mery, B., Moot, R., & Retoré, C. (2013). Plurals: individuals and sets in a richly typed semantics. In S. Yatabe (Ed.), Proceedings of the Tenth International Workshop of Logic and Engineering of Natural Language Semantics (LENLS10) (pp. 143–156). Hiyoshi, Kanagawa: Keio University.
Mery, B., Moot, R., & Retoré, C. (2015). Computing the semantics of plurals and massive entities using many-sorted types. In T. Murata, K. Mineshima, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (pp. 144–159). Berlin & Heidelberg: Springer.
Montague, R. (1974). The proper treatment of quantification in ordinary English. In R. H. Thomason (Ed.), Formal philosophy. Selected papers of Richard Montague (pp. 247–270). New Haven, CT: Yale University Press.
Moortgat, M. (1997). Categorial type logics. In J. van Benthem, & A. ter Meulen (Eds.), Handbook of logic and language (pp. 93–177). Amsterdam & Cambridge: Elsevier/MIT Press.
Moot, R. (2012). Wide-coverage semantics for spatio-temporal reasoning. Traitement Automatique des Langues, 53(2), 115–142.
Moot, R. (2015). A type-logical treebank for French. Journal of Language Modelling, 3(1), 229–264.
Moot, R. (2017). The Grail theorem prover: Type theory for syntax and semantics. In S. Chatzikyriakidis, & Z. Luo (Eds.), Modern perspectives in type theoretical semantics (pp. 247–277). Berlin & Heidelberg: Springer.
Moot, R., Prévot, L., & Retoré, C. (2011a). Discursive analysis of itineraries in a historical regional corpus of travels: Syntax, semantics, and pragmatics in a unified type theoretical framework. In Proceedings of Constraints in Discourse. Agay-Roches Rouges.
Moot, R., Prévot, L., & Retoré, C. (2011b). Un calcul de termes typés pour la pragmatique lexicale: Chemins et voyageurs fictifs dans un corpus de récits de voyages. In M. Lafourcade & V. Prince (Eds.), Actes de la 18e Conférence sur le Traitement Automatique des Langues Naturelles, TALN 2011 (pp. 161–166). Montpellier.
Moot, R., & Retoré, C. (2011). Second order lambda calculus for meaning assembly: on the logical syntax of plurals. In Proceedings of Computing Natural Reasoning (COCONAT). Tilburg.
Moot, R., & Retoré, C. (2012). The logic of categorial grammars: A deductive account of natural language syntax and semantics. Berlin & Heidelberg: Springer.
Muskens, R. (1994). Categorial grammar and discourse representation theory. In Proceedings of COLING 1994 (pp. 508–514). Kyoto.
Nam, S. (1995). The Semantics of locative prepositional phrases in English. PhD dissertation. Los Angeles, CA: UCLA.
Pustejovsky, J. (1995). The generative lexicon. Cambridge, MA: MIT Press.
Real, L., & Retoré, C. (2014). Deverbal semantics and the Montagovian Generative Lexicon λTyn. Journal of Logic, Language and Information, 23(3), 347–366.
Retoré, C. (2014). The Montagovian Generative Lexicon ΛTyn: A type theoretical framework for natural language semantics. In R. Matthes, & A. Schubert (Eds.), Proceedings of the 19th International Conference on Types for Proofs and Programs (TYPES 2013) (pp. 202–229). Dagstuhl, Germany: Leibniz-Zentrum für Informatik.
Talmy, L. (1983). How language structures space. In H. L. Pick, & L. P. Acredolo (Eds.), Spatial orientation: Theory, research, and application (pp. 225–282). New York: Plenum Publishing Corporation.
Talmy, L. (1996). Fictive motion in language and “ception”. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 211–276). Cambridge, MA: MIT Press.
Tversky, B. (1996). Spatial perspective in descriptions. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 463–491). Cambridge, MA: MIT Press.
van Eijck, J., & Kamp, H. (1997). Representing discourse in context. In J. van Benthem, & A. ter Meulen (Eds.), Handbook of logic and language (pp. 179–237). Amsterdam & Cambridge: Elsevier/MIT Press.
Cited by (2)
Cited by two other publications
Murphy, Elliot
2024.
Predicate order and coherence in copredication.
Inquiry 67:6
► pp. 1744 ff.
Mery, Bruno, Richard Moot & Christian Retoré
2019.
Solving the Individuation and Counting Puzzle with $$\lambda $$ -DRT and MGL. In
New Frontiers in Artificial Intelligence [
Lecture Notes in Computer Science, 11717],
► pp. 298 ff.
This list is based on CrossRef data as of 9 september 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.