Report of meeting published In:
Technology
Edited by Franz Pöchhacker and Minhua Liu
[Interpreting 26:2] 2024
► pp. 178200
References (36)
References
ATLAS.ti (2023). ATLAS.ti (23.2.1) [Qualitative data analysis software]. [URL] (accessed 31 July 2024).
Baigorri-Jalón, J. (2014). From Paris to Nuremberg: The birth of conference interpreting (H. Mikkelson & B. Slaughter Olsen, trans.). Amsterdam: John Benjamins. DOI logoGoogle Scholar
Baigorri-Jalón, J., Fernández-Sánchez, M. M. & Payàs, G. (2022). Historical developments in conference interpreting: An overview. In M. Albl-Mikasa & E. Tiselius (Eds.), The Routledge handbook of conference interpreting. London/New York: Routledge, 9–18. DOI logoGoogle Scholar
Bernardi, R. & Exworthy, M. (2020). Clinical managers’ identity at the crossroad of multiple institutional logics in IT innovation: The case study of a health care organization in England. Information Systems Journal 30 (3), 566–595. DOI logoGoogle Scholar
Cheung, A. K. & Li, T. (2022). Machine aided interpreting: An experiment of automatic speech recognition in simultaneous interpreting. Translation Quarterly 104 1, 1–20.Google Scholar
Corpas Pastor, G. & Defrancq, B. (Eds.) (2023). Interpreting technologies — current and future trends. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Defrancq, B. (2023). Technology in interpreter education and training: A structured set of proposals. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 302–320. DOI logoGoogle Scholar
Defrancq, B. & Corpas Pastor, G. (2023). Introduction. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 1–5. DOI logoGoogle Scholar
Deysel, E. (2023). Investigating the use of technology in the interpreting profession: A comparison of the Global South and Global North. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 142–168. DOI logoGoogle Scholar
Downie, J. (2020). Interpreters vs machines: Can interpreters survive in an AI-dominated world? London/New York: Routledge.Google Scholar
(2023). Where is it all going? Technology, economic pressures and the future of interpreting. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 277–301. DOI logoGoogle Scholar
Fantinuoli, C. (2017). Computer-assisted preparation in conference interpreting. Translation and Interpreting 9 (2), 24–37. DOI logoGoogle Scholar
(2018a). Interpreting and technology: The upcoming technological turn. In C. Fantinuoli (Ed.), Interpreting and technology. Berlin: Language Science Press, 1–12. DOI logoGoogle Scholar
(Ed.) (2018b). Interpreting and technology (Translation and Multilingual Natural Language Processing 11). Berlin: Language Science Press.Google Scholar
(2019). The technological turn in interpreting: The challenges that lie ahead. In W. Baur & F. Mayer (Eds.), Übersetzen und Dolmetschen 4.0: Neue Wege im Digitalen Zeitalter. Berlin: BDÜ Fachverlag, 334–354.Google Scholar
(2022). Conference interpreting and new technologies. In M. Albl-Mikasa & E. Tiselius (Eds.), The Routledge handbook of conference interpreting. London/New York: Routledge, 508–522.Google Scholar
Fantinuoli, C. & Prandi, B. (2021). Towards the evaluation of automatic simultaneous speech translation from a communicative perspective. arXiv. [URL] (accessed 31 July 2024). DOI logo
Frittella, F. M. & Rodríguez, S. (2022). Putting SmartTerp to test: A tool for the challenges of remote interpreting. INContext 2 (2), 137–166. DOI logoGoogle Scholar
Germain, M.-L. & Grenier, R. S. (Eds.) (2022). Expertise at work: Current and emerging trends. Berlin: Springer.Google Scholar
Goto, M. (2021). Collective professional role identity in the age of artificial intelligence. Journal of Professions and Organization 8 (1), 86–107. DOI logoGoogle Scholar
Jayes, T. (2023). Conference interpreting and technology: An institutional perspective. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 217–240. DOI logoGoogle Scholar
Kalina, S. & Ziegler, K. (2015). Technology. In F. Pöchhacker (Ed.), Routledge encyclopedia of interpreting studies. London/New York: Routledge, 410–412.Google Scholar
Lewis, W. D. & Niehues, J. (2023). Automatic speech translation in the classroom and lecture setting: Challenges, approaches, and future directions. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 241–276. DOI logoGoogle Scholar
Liu, M. (2019). In search of a cognitive model for interpreting expertise. In Z. Wen, P. Skehan, A. Biedroń, S. Li & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice. London/New York: Routledge, 299–315. DOI logoGoogle Scholar
Mellinger, C. D. (2023). Embedding, extending, and distributing interpreter cognition with technology. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 195–216. DOI logoGoogle Scholar
Mellinger, C. D. & Hanson, T. A. (2018). Interpreter traits and the relationship with technology and visibility. Translation and Interpreting Studies 13 (3), 366–392. DOI logoGoogle Scholar
Mirbabaie, M., Brünker, F., Möllmann, N. R. J. & Stieglitz, S. (2022). The rise of artificial intelligence — understanding the AI identity threat at the workplace. Electronic Markets 32 1, 73–99. DOI logoGoogle Scholar
Moser-Mercer, B. (2022). Conference interpreting and expertise. In M. Albl-Mikasa & E. Tiselius (Eds.), The Routledge handbook of conference interpreting. London/New York: Routledge, 386–400. DOI logoGoogle Scholar
OpenAI (2023, April). ChatGPT. [URL] (accessed 31 July 2024).
Parasuraman, A. (2000). Technology Readiness Index (TRI): A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research 2 (4), 307–320. DOI logoGoogle Scholar
Parasuraman, A. & Colby, C. L. (2015). An updated and streamlined Technology Readiness Index: TRI 2.0. Journal of Service Research 18 (1), 59–74. DOI logoGoogle Scholar
Prandi, B. (2023). Computer-assisted simultaneous interpreting: A cognitive-experimental study on terminology. Berlin: Language Science Press.Google Scholar
Simon, F. M. (2022). Uneasy bedfellows: AI in the news, platform companies and the issue of journalistic autonomy. Digital Journalism 10 (10), 1832–1854. DOI logoGoogle Scholar
Tiselius, E. & Hild, A. (2017). Expertise and competence in translation and interpreting. In J. W. Schwieter & A. Ferreira (Eds.), The handbook of translation and cognition. Oxford: Wiley-Blackwell, 423–444. DOI logoGoogle Scholar
Zhang, X., Corpas Pastor, G. & Zhang, J. (2023). Videoconference interpreting goes multimodal: Some insights and a tentative proposal. In G. Corpas Pastor & B. Defrancq (Eds.), Interpreting technologies — current and future trends. Amsterdam: John Benjamins, 169–194. DOI logoGoogle Scholar
Zhao, S., Koh, S. N. & Luke, K. K. (2012). Accent reduction for computer-aided language learning. In EUSIPCO 2012: 20th European Signal Processing Conference , 27–31 August 2012, Bucharest, Romania, 335–339. [URL] (accessed 31 July 2024).