References

References

Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S.
(2014) Bilingualism protects anterior temporal lobe integrity in aging. Neurobiology of Aging, 35, 2126–2133. CrossrefGoogle Scholar
Abutalebi, J., Cappa, S. F., & Perani, D.
(2001) The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4, 179–190. CrossrefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P. A., Parris, B. A., & Weekes, B. S.
(2015) Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201–210. CrossrefGoogle Scholar
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., … & Kaul, S.
(2013) Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology, 81, 1938–1944. CrossrefGoogle Scholar
Ansaldo, A. I., Ghazi-Saidi, L., & Adrover-Roig, D.
(2015) Interference control in elderly bilinguals: Appearances can be misleading. Journal of Clinical and Experimental Neuropsychology, 37, 455–470. CrossrefGoogle Scholar
Appelbaum, L. G., Boehler, C. N., Davis, L. A., Won, R. J., & Woldorff, M. G.
(2014) The dynamics of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive Neuroscience, 26, 1021–1038. CrossrefGoogle Scholar
Bak, T. H., Vega-Mendoza, M., & Sorace, A.
(2014) Never too late? An advantage on tests of auditory attention extends to late bilinguals. Frontiers in Psychology, 5, 485. CrossrefGoogle Scholar
Berroir, P., Ghazi-Saidi, L., Dash, T., Adrover-Roig, D., Benali, H., & Ansaldo, A. I.
(2017) Interference control at the response level: Functional networks reveal higher efficiency in the bilingual brain. Journal of Neurolinguistics, 43, 4–16. CrossrefGoogle Scholar
Bialystok, E., Craik, F. I., & Freedman, M.
(2007) Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459–464. CrossrefGoogle Scholar
Bialystok, E., Craik, F. I., Green, D. W., & Gollan, T. H.
(2009) Bilingual minds. Psychological Science in the Public Interest, 10, 89–129. CrossrefGoogle Scholar
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M.
(2004) Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19, 290–303. CrossrefGoogle Scholar
Bialystok, E., Craik, F. I., & Luk, G.
(2012) Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16, 240–250. CrossrefGoogle Scholar
Blumenfeld, H. K., & Marian, V.
(2013) Parallel language activation and cognitive control during spoken word recognition in bilinguals. Journal of Cognitive Psychology, 25, 547. CrossrefGoogle Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D.
(2001) Conflict monitoring and cognitive control. Psychological review, 108(3), 624–652. CrossrefGoogle Scholar
Braver, T. S.
(2012) The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. CrossrefGoogle Scholar
Braver, T. S., Barch, D. M., Kelley, W. M., Buckner, R. L., Cohen, N. J., Miezin, F. M., … & Petersen, S. E.
(2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. NeuroImage, 14, 48–59. CrossrefGoogle Scholar
Braver, T. S., Gray, J. R., & Burgess, G. C.
(2007) Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 76–106). New York: Oxford University Press.Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M.
(2009) Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7351–7356. CrossrefGoogle Scholar
Braver, T. S., & West, R.
(2008) Working memory, executive control, and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 311–372). New York: Psychology Press.Google Scholar
Burgess, G. C., & Braver, T. S.
(2010) Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence. PloS one, 5(9), e12861, 1–11. CrossrefGoogle Scholar
Cai, W., Ryali, S., Chen, T., Li, C. S. R., & Menon, V.
(2014) Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience, 34, 14652–14667. CrossrefGoogle Scholar
Calabria, M., Hernandez, M., Martin, C. D., & Costa, A.
(2011) When the tail counts: The advantage of bilingualism through the ex-Gaussian distribution analysis. Frontiers in Psychology, 2, 250. CrossrefGoogle Scholar
Chouiter, L., Holmberg, J., Manuel, A. L., Colombo, F., Clarke, S., Annoni, J. M., & Spierer, L.
(2016) Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: A lesion study. Neuroscience, 329, 275–283. CrossrefGoogle Scholar
Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., La Heij, W., & Hommel, B.
(2008) How does bilingualism improve executive control? A comparison of active and reactive inhibition mechanisms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 302–312.Google Scholar
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N.
(2009) On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113, 135–149. CrossrefGoogle Scholar
Czernochowski, D., Nessler, D., & Friedman, D.
(2010) On why not to rush older adults – Relying on reactive cognitive control can effectively reduce errors at the expense of slowed responses. Psychophysiology, 47, 637–646.Google Scholar
Dash, T., & Joanette, Y.
(2016) Neurocognitive markers of aging. In N. Pachana (Ed.), Encyclopedia of geropsychology (pp. 1–10). Singapore: Springer. CrossrefGoogle Scholar
Dash, T., & Kar, B. R.
(2014) Bilingual language control and general purpose cognitive control among individuals with bilingual aphasia: Evidence based on negative priming and flanker tasks. Behavioural Neurology 2014, 679–706.Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R.
(2007) Que PASA? The posterior – anterior shift in aging. Cerebral Cortex, 18, 1201–1209. CrossrefGoogle Scholar
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … & Albert, M. S.
(2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980. CrossrefGoogle Scholar
Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., … & Benali, H.
(2009) Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61–75. CrossrefGoogle Scholar
Doyon, J., & Benali, H.
(2005) Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. CrossrefGoogle Scholar
Edwards, B. G., Barch, D. M., & Braver, T. S.
(2010) Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4, 32.Google Scholar
Fassbender, C., Hester, R., Murphy, K., Foxe, J. J., Foxe, D. M., & Garavan, H.
(2009) Prefrontal and midline interactions mediating behavioural control. European Journal of Neuroscience, 29, 181–187.Google Scholar
Fassbender, C., Scangos, K., Lesh, T. A., & Carter, C. S.
(2014) RT distributional analysis of cognitive-control-related brain activity in first-episode schizophrenia. Cognitive, Affective, and Behavioral Neuroscience, 14, 175–188. CrossrefGoogle Scholar
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E.
(2009) The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101, 3270–3283. CrossrefGoogle Scholar
Gerchen, M. F., & Kirsch, P.
(2017) Combining task-related activation and connectivity analysis of fMRI data reveals complex modulation of brain networks. Human Brain Mapping, 38, 5726–5739. CrossrefGoogle Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D.
(2013) Lifelong bilingualism maintains neural efficiency for cognitive control in aging. Journal of Neuroscience, 33, 387–396. CrossrefGoogle Scholar
Grady, C. L.
(2008) Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124, 127–144. CrossrefGoogle Scholar
Grady, C. L., Luk, G., Craik, F. I., & Bialystok, E.
(2015) Brain network activity in monolingual and bilingual older adults. Neuropsychologia, 66, 170–181. CrossrefGoogle Scholar
Grant, A., Dennis, N. A., & Li, P.
(2014) Cognitive control, cognitive reserve, and memory in the aging bilingual brain. Frontiers in Psychology, 5, 1401. CrossrefGoogle Scholar
Green, D. W.
(1998) Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1, 67–81. CrossrefGoogle Scholar
Green, D. W., & Abutalebi, J.
(2013) Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25, 515–530. CrossrefGoogle Scholar
Gupta, R., Kar, B. R., & Srinivasan, N.
(2009) Development of task switching and post-error-slowing in children. Behavioral and Brain Functions, 5, 38. CrossrefGoogle Scholar
Guzmán-Vélez, E., & Tranel, D.
(2015) Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139–150. CrossrefGoogle Scholar
Hikosaka, O., & Isoda, M.
(2010) Switching from automatic to controlled behavior: Cortico-basal ganglia mechanisms. Trends in Cognitive Sciences, 14, 154–161. CrossrefGoogle Scholar
Houghton, G., & Grange, J. A.
(2011) CDF-XL: Computing cumulative distribution functions of reaction time data in Excel. Behavior Research Methods, 43, 1023–1032. CrossrefGoogle Scholar
Hultsch, D. F., Hunter, M. A., MacDonald, S. W., & Strauss, E.
(2005) Inconsistency in response time as an indicator of cognitive aging. In J. Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control, and age (pp. 33–58). Oxford: Oxford University Press. CrossrefGoogle Scholar
Irlbacher, K., Kraft, A., Kehrer, S., & Brandt, S. A.
(2014) Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory. Neuroscience and Biobehavioral Reviews, 46, 58–70. CrossrefGoogle Scholar
Jiang, J., Beck, J., Heller, K., & Egner, T.
(2015) An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nature Communications, 6, 8165. CrossrefGoogle Scholar
Luk, G., Bialystok, E., Craik, F. I., & Grady, C. L.
(2011) Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31, 16808–16813. CrossrefGoogle Scholar
Luk, G., Green, D. W., Abutalebi, J., & Grady, C.
(2012) Cognitive control for language switching in bilinguals: A quantitative meta-analysis of functional neuroimaging studies. Language and Cognitive Processes, 27, 1479–1488. CrossrefGoogle Scholar
Marian, V., Blumenfeld, H. K., & Kaushanskaya, M.
(2007) The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940–967. CrossrefGoogle Scholar
Marian, V., & Shook, A.
(2012) The cognitive benefits of being bilingual. Cerebrum 2012, 13.Google Scholar
Marklund, P., & Persson, J.
(2012) Context-dependent switching between proactive and reactive working memory control mechanisms in the right inferior frontal gyrus. NeuroImage, 63, 1552–1560. CrossrefGoogle Scholar
Morales, J., Gómez-Ariza, C. J., & Bajo, M. T.
(2013) Dual mechanisms of cognitive control in bilinguals and monolinguals. Journal of Cognitive Psychology, 25, 531–546. CrossrefGoogle Scholar
Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T.
(2015) Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157–169. CrossrefGoogle Scholar
Paap, K. R., & Greenberg, Z. I.
(2013) There is no coherent evidence for a bilingual advantage in executive processing. Cognitive psychology, 66(2), 232–258. CrossrefGoogle Scholar
Packard, C. J., Westendorp, R. G., Stott, D. J., Caslake, M. J., Murray, H. M., Shepherd, J., … & Cobbe, S. M.
(2007) Association between apolipoprotein E4 and cognitive decline in elderly adults. Journal of the American Geriatrics Society, 55(11), 1777–1785. CrossrefGoogle Scholar
Paxton, J. L., Barch, D. M., Racine, C. A., & Braver, T. S.
(2007) Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18, 1010–1028. CrossrefGoogle Scholar
Paxton, J. L., Barch, D. M., Storandt, M., & Braver, T. S.
(2006) Effects of environmental support and strategy training on older adults’ use of context. Psychology and Aging, 21, 499–509. CrossrefGoogle Scholar
Perani, D., & Abutalebi, J.
(2015) Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28, 618–625. CrossrefGoogle Scholar
Ratcliff, R.
(1979) Group reaction time distributions and an analysis of distribution statistics. Psychological bulletin, 86(3), 446–461. CrossrefGoogle Scholar
Rubinov, M., & Sporns, O.
(2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069. CrossrefGoogle Scholar
Simon, J. R., & Rudell, A. P.
(1967) Auditory SR compatibility: the effect of an irrelevant cue on information processing. Journal of applied psychology, 51(3), 300–304. CrossrefGoogle Scholar
Schlaug, G.
(2015) Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. CrossrefGoogle Scholar
Tops, M., & Boksem, M. A.
(2011) A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms, and event-related potentials. Frontiers in Psychology, 2, 330. CrossrefGoogle Scholar
Tse, C. S., & Altarriba, J.
(2012) The effects of first- and second-language proficiency on conflict resolution and goal maintenance in bilinguals: Evidence from reaction time distributional analyses in a Stroop task. Bilingualism: Language and Cognition, 15, 663–676. CrossrefGoogle Scholar
Ullsperger, M., & King, J. A.
(2010) Proactive and reactive recruitment of cognitive control: Comment on Hikosaka and Isoda. Trends in Cognitive Sciences, 14, 191–192. CrossrefGoogle Scholar
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L.
(2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438. CrossrefGoogle Scholar
Whelan, R.
(2008) Effective analysis of reaction time data. The Psychological Record, 58, 475–482. CrossrefGoogle Scholar
Wu, T., Kansaku, K., & Hallett, M.
(2004) How self-initiated memorized movements become automatic: A functional MRI study. Journal of Neurophysiology, 91, 1690–1698. CrossrefGoogle Scholar
Xia, M., Wang, J., & He, Y.
(2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PloS one, 8(7), e68910. CrossrefGoogle Scholar
Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E., & Braver, T. S.
(2009) BOLD correlates of trial-by-trial reaction time variability in gray and white matter: A multi-study fMRI analysis. PLoS One, 4, e4257. CrossrefGoogle Scholar
Zhang, H., Kang, C., Wu, Y., Ma, F., & Guo, T.
(2015) Improving proactive control with training on language switching in bilinguals. NeuroReport, 26, 354–359. CrossrefGoogle Scholar
Cited by

Cited by other publications

Dash, Tanya, Pierre Berroir, Yves Joanette & Ana Inés Ansaldo
2019. Alerting, Orienting, and Executive Control: The Effect of Bilingualism and Age on the Subcomponents of Attention. Frontiers in Neurology 10 Crossref logo
Dash, Tanya, Michele Masson-Trottier & Ana Ines Ansaldo
2020. Efficiency of attentional processes in bilingual speakers with aphasia. Aphasiology  pp. 1 ff. Crossref logo

This list is based on CrossRef data as of 02 september 2020. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.