Part of
Growing Old with Two Languages: Effects of Bilingualism on Cognitive Aging
Edited by Ellen Bialystok and Margot D. Sullivan
[Studies in Bilingualism 53] 2017
► pp. 185203
References (75)
References
Abutalebi, J., Canini, M., Della Rosa, P. A., Sheung, L. P., Green, D. W., & Weekes, B. S. (2014). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A Structural Neuroimaging Study in Aging Chinese Bilinguals. Journal of Neurolinguistics.Google Scholar
Albert, M. S., Jones, K., Savage, C. R., Berkman, L., Seeman, T., Blazer, D., & Rowe, J. W. (1995). Predictors of cognitive change in older persons: MacArthur studies of successful aging. Psychol Aging, 10:578–589. DOI logoGoogle Scholar
Alladi, S., Bak, T. H., Duggirala, V., Surampudi, B., Shailaja, M., Shukla, A. K., Chaudhuri, J. R., & Kaul, S. (2013). Bilingualism delays age at onset of dementia, independent of education and immigration status. Neurology 81:1938–1944. DOI logoGoogle Scholar
Amieva, H., Jacqmin-Gadda, H., Orgogozo, J. M., Le Carret, N., Helmer, C., Letenneur, L., Barberger-Gateau, P., Fabrigoule, C., & Dartigues, J. F. (2005). The 9 year cognitive decline before dementia of the Alzheimer type: a prospective population-based study. Brain 128:1093–1101. DOI logoGoogle Scholar
Bak, T. H., Nissan, J. J., Allerhand, M. M., & Deary, I. J. (2014). Does bilingualism influence cognitive aging? Ann Neurol 75:959–963. DOI logoGoogle Scholar
Bennett, D. A., Schneider, J. A., Tang, Y., Arnold, S. E., & Wilson, R. S. (2006). The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5:406–412. DOI logoGoogle Scholar
Bialystok, E., & Craik, F. I. M. (2010). Cognitive and linguisitc processing in the bilingual mind. Current Directions in Psychological Science 19:19–23. DOI logoGoogle Scholar
Bialystok, E., Craik, F. I. M., & Ryan, J. (2006). Executive control in a modified antisaccade task: Effects of aging and bilingualism. J Exp Psychol Learn Mem Cogn 32:1341–1354. DOI logoGoogle Scholar
Bialystok, E., Craik, F. I. M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia 45:459–464. DOI logoGoogle Scholar
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: consequences for mind and brain. Trends Cogn Sci 16:240–250. DOI logoGoogle Scholar
Birks, J. (2006). Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database Syst Rev:CD005593. DOI logoGoogle Scholar
Bradl, M., & Lassmann, H. (2010). Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53. DOI logoGoogle Scholar
Chertkow, H., Whitehead, V., Phillips, N., Wolfson, C., Atherton, J., & Bergman, H. (2010). Multilingualism (but not always bilingualism) delays the onset of Alzheimer disease: evidence from a bilingual community. Alzheimer Dis Assoc Disord 24:118–125. DOI logoGoogle Scholar
Christensen, H. (2001). What cognitive changes can be expected with normal ageing? The Australian and New Zealand journal of psychiatry 35:768–775. DOI logoGoogle Scholar
Chua, T. C., Wen, W., Slavin, M. J., & Sachdev, P. S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease: a review. Curr Opin Neurol 21:83–92. DOI logoGoogle Scholar
Convit, A., De Leon, M. J., Tarshish, C., De Santi, S., Tsui, W., Rusinek, H., & George, A. (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18:131–138. DOI logoGoogle Scholar
Costa, A., Hernandez, M., & Sebastian-Galles, N. (2008). Bilingualism aids conflict resolution: evidence from the ANT task. Cognition 106:59–86. DOI logoGoogle Scholar
Craik, F. I. M., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: bilingualism as a form of cognitive reserve. Neurology 75:1726–1729. DOI logoGoogle Scholar
Craik, F. I. M., & Salthouse, T. A., Eds (2008). The handbook of aging and cognition, 3rd edition. New York, NY: Psychology Press.Google Scholar
Deary, I. J., Gow, A. J., Pattie, A., & Starr, J. M. (2012). Cohort profile: The Lothian Birth Cohorts of 1921 and 1936. International journal of epidemiology 41:1576–1584. DOI logoGoogle Scholar
Dickerson, B. C., & Wolk, D. A. (2012). MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology 78:84–90. DOI logoGoogle Scholar
Dickerson, B. C., Bakkour, A., Salat, D. H., Feczko, E., Pacheco, J., Greve, D. N., Grodstein, F., Wright, C. I., Blacker, D., Rosas, H. D., Sperling, R. A., Atri, A., Growdon, J. H., Hyman, B. T., Morris, J. C., Fischl, B., & Buckner, R. L. (2009). The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510. DOI logoGoogle Scholar
Farrimond, L. E., Roberts, E., & McShane, R. (2012). Memantine and cholinesterase inhibitor combination therapy for Alzheimer's disease: a systematic review. BMJ open 2. DOI logoGoogle Scholar
Fernandes, M. A., Craik, F. I. M., Bialystok, E., & Kreuger, S. (2007). Effects of bilingualism, aging, and semantic relatedness on memory under divided attention. Can J Exp Psychol 61:128–141. DOI logoGoogle Scholar
Gold, B. T., Johnson, N. F., Powell, D. K., & Smith, C. D. (2012). White matter integrity and vulnerability to Alzheimer's disease: Preliminary findings and future directions. Biochim Biophys Acta 1822:416–422. DOI logoGoogle Scholar
Gold, B. T., Johnson, N. F., & Powell, D. K. (2013a). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia 51:2841–2846. DOI logoGoogle Scholar
Gold, B. T., Kim, C., Johnson, N. F., Kryscio, R. J., & Smith, C. D. (2013b). Lifelong bilingualism maintains neural efficiency for cognitive control in aging. J Neurosci 33:387–396. DOI logoGoogle Scholar
Gold, B. T. (2015). Lifelong bilingualism and neural reserve against Alzheimer's disease: A review of findings and potential mechanisms. Behavioural Brain Research 281C, 9–15. DOI logoGoogle Scholar
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36. DOI logoGoogle Scholar
Grady, C. L., Luk, G., Craik, F. I. M., & Bialystok, E. (2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia 66:170–181. DOI logoGoogle Scholar
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition 1:67–81. DOI logoGoogle Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. J Cogn Psychol (Hove) 25:515–530. DOI logoGoogle Scholar
Gyllensten, L., & Malmfors, T. (1963). Myelinization of the optic nerve and its dependence on visual function--a quantitative investigation in mice. J Embryol Exp Morphol 11:255–266.Google Scholar
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65. DOI logoGoogle Scholar
Jack, C. R., Jr., Petersen, R. C., Xu, Y. C., Waring, S. C., O'Brien, P. C., Tangalos, E. G., Smith, G. E., Ivnik, R. J., & Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49:786–794. DOI logoGoogle Scholar
Josefsson, K., Jokela, M., Cloninger, C. R., Hintsanen, M., Salo, J., Hintsa, T., Pulkki-Raback, L., & Keltikangas-Jarvinen, L. (2013). Maturity and change in personality: Developmental trends of temperament and character in adulthood. Dev Psychopathol 25:713–727. DOI logoGoogle Scholar
Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and in dementia. In: Clinical neurology of aging (Albert, M. L., & Knoepfel, E. J. E., eds), pp 3–67. New York: Oxford University Press.Google Scholar
Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp 33:130–142. DOI logoGoogle Scholar
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci 31:16808–16813. DOI logoGoogle Scholar
Madden, D. J., Bennett, I. J., Burzynska, A., Potter, G. G., Chen, N. K., & Song, A. W. (2012). Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 1822:386–400. DOI logoGoogle Scholar
Martensson, J., Eriksson, J., Bodammer, N. C., Lindgren, M., Johansson, M., Nyberg, L., & Lovden, M. (2012). Growth of language-related brain areas after foreign language learning. Neuroimage 63:240–244. DOI logoGoogle Scholar
Martin, S. B., Smith, C. D., Collins, H. R., Schmitt, F. A., & Gold, B. T. (2010). Evidence that volume of anterior medial temporal lobe is reduced in seniors destined for mild cognitive impairment. Neurobiol Aging 31:1099–1106. DOI logoGoogle Scholar
Mayeux, R. (2003). Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104. DOI logoGoogle Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944. DOI logoGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. DOI logoGoogle Scholar
Mortimer, J. A. (1997). Brain reserve and the clinical expression of Alzheimer's disease. Geriatrics 52 Suppl 2:S50–53.Google Scholar
Petrosini, L., De Bartolo, P., Foti, F., Gelfo, F., Cutuli, D., Leggio, M. G., & Mandolesi, L. (2009). On whether the environmental enrichment may provide cognitive and brain reserves. Brain research reviews 61:221–239. DOI logoGoogle Scholar
Raz, N., & Kennedy, K. M. (2009). A systems approach to age-related change: Neuroanatomical changes, their modifiers, and cognitive correlates. In: Imaging the aging brain (Jagust, W., & Desposito, M., eds), pp 43–70. New York, NY: Oxford University Press. DOI logoGoogle Scholar
Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689. DOI logoGoogle Scholar
Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301.Google Scholar
Richards, M., & Deary, I. J. (2005). A life course approach to cognitive reserve: A model for cognitive aging and development? Ann Neurol 58:617–622. DOI logoGoogle Scholar
Riley, K. P., Snowdon, D. A., & Markesbery, W. R. (2002). Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: Findings from the Nun Study. Ann Neurol 51:567–577. DOI logoGoogle Scholar
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287. DOI logoGoogle Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428. DOI logoGoogle Scholar
Schaie, K. W. (1996). Intellectual development in adulthood: The Seattle longitudinal study. Cambridge: Cambridge University Press.Google Scholar
Schmidtke, K., & Hull, M. (2005). Cerebral small vessel disease: how does it progress? J Neurol Sci 229–230:13–20.Google Scholar
Schweizer, T. A., Ware, J., Fischer, C. E., Craik, F. I. M., & Bialystok, E. (2012). Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease. Cortex 48:991–996. DOI logoGoogle Scholar
Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., Blennow, K., Soares, H., Simon, A., Lewczuk, P., Dean, R., Siemers, E., Potter, W., Lee, V. M., & Trojanowski, J. Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 65:403–413. DOI logoGoogle Scholar
Smith, C. D., Chebrolu, H., Wekstein, D. R., Schmitt, F. A., & Markesbery, W. R. (2007). Age and gender effects on human brain anatomy: A voxel-based morphometric study in healthy elderly. Neurobiol Aging 28:1075–1087. DOI logoGoogle Scholar
Smith, C. N., & Squire, L. R. (2009). Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J Neurosci 29:930–938. DOI logoGoogle Scholar
Spires, T. L., & Hannan, A. J. (2005). Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J 272:2347–2361.Google Scholar
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86. DOI logoGoogle Scholar
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231. DOI logoGoogle Scholar
Stebbins, G. T., & Murphy, C. M. (2009). Diffusion tensor imaging in Alzheimer's disease and mild cognitive impairment. Behav Neurol 21:39–49. DOI logoGoogle Scholar
Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta 1822:467–473. DOI logoGoogle Scholar
Stein, M., Federspiel, A., Koenig, T., Wirth, M., Strik, W., Wiest, R., Brandeis, D., & Dierks, T. (2012). Structural plasticity in the language system related to increased second language proficiency. Cortex 48:458–465. DOI logoGoogle Scholar
Stern, Y., Alexander, G. E., Prohovnik, I., & Mayeux, R.. (1992). Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer's disease. Ann Neurol. 32:371–5. DOI logoGoogle Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460. DOI logoGoogle Scholar
(2009). Cognitive reserve. Neuropsychologia 47:2015–2028. DOI logoGoogle Scholar
Tisserand, D. J., van Boxtel, M. P., Pruessner, J. C., Hofman, P., Evans, A. C., & Jolles, J. (2004). A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex 14:966–973. DOI logoGoogle Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: a systematic review. Psychol Med 36:441–454. DOI logoGoogle Scholar
Van Dijk, K. R. A., Van Gerven, P. W. M., Van Boxtel, M. P. J., Van der Elst, W., & Jolles, J. (2008). No protective effects of education during normal cognitive aging: Results from the 6-year follow-up of the Maastricht aging study. Psychology and Aging 23:119–130. DOI logoGoogle Scholar
Vlassenko, A. G., Benzinger, T. L., & Morris, J. C. (2012). PET amyloid-beta imaging in preclinical Alzheimer's disease. Biochim Biophys Acta 1822:370–379. DOI logoGoogle Scholar
Yeung, C. M., St John, P. D., Menec, V., & Tyas, S. L. (2014). Is bilingualism associated with a lower risk of dementia in community-living older adults? Cross-sectional and prospective analyses. Alzheimer Dis Assoc Disord. DOI logoGoogle Scholar
Zahodne, L. B., Schofield, P. W., Farrell, M. T., Stern, Y., & Manly, J. J. (2014). Bilingualism does not alter cognitive decline or dementia risk among Spanish-speaking immigrants. Neuropsychology 28:238–246. DOI logoGoogle Scholar
Cited by (2)

Cited by two other publications

Antoniou, Mark
2019. The Advantages of Bilingualism Debate. Annual Review of Linguistics 5:1  pp. 395 ff. DOI logo

This list is based on CrossRef data as of 30 october 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.