Towards robust complexity indices in linguistic typology
A corpus-based assessment
There is high hope that corpus-based approaches to language complexity will contribute to explaining linguistic diversity. Several complexity indices have consequently been proposed to compare different aspects among languages, especially in phonology and morphology. However, their robustness against changes in corpus size and content hasn’t been systematically assessed, thus impeding comparability between studies. Here, we systematically test the robustness of four complexity indices estimated from raw texts and either routinely utilized in crosslinguistic studies (Type-Token Ratio and word-level Entropy) or more recently proposed (Word Information Density and Lexical Diversity). Our results on 47 languages strongly suggest that traditional indices are more prone to fluctuation than the newer ones. Additionally, we confirm with Word Information Density the existence of a cross-linguistic trade-off between word-internal and across-word distributions of information. Finally, we implement a proof of concept suggesting that modern deep-learning language models can improve the comparability across languages with non-parallel datasets.
Article outline
- 1.Introduction
- 2.Linguistic complexity across languages: A short overview
- 3.Corpus description and subsampling strategy
- 4.Morphological complexity
- 4.1Grammar-based morphological complexity indices
- 4.1.1Methods
- 4.1.2Crosslinguistic overview
- 4.2Towards robust indices of morphological complexity
- 4.2.1Methods
- 4.2.2Results: Type-Token ratio and entropy
- 4.2.3Results: Measure of textual lexical diversity and word information density
- 4.3Comparing corpus-based and grammar-based indices
- 5.Beyond word complexity
- 6.Breaking the parallel corpus barrier: A proof of concept
- 6.1Experimental framework
- 6.2Evaluating information content
- 6.3Comparing information density estimations from parallel and non-parallel corpora
- 7.General discussion
- 8.Conclusions
- Acknowledgements
- Notes
-
References
References (95)
References
Ackerman, Farrell & Robert Malouf. 2013. Morphological organization: The low conditional entropy conjecture. Language 89(3). 429–464.
Aranovich, Raúl. 2013. Transitivity and polysynthesis in Fijian. Language 89(3). 465–500.
Arkadiev, Peter & Francesco Gardani (eds.). 2020. Introduction: The complexities of morphology. Oxford: Oxford University Press.
Artetxe, Mikel & Holger Schwenk. 2019. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics 71. 597–610.
Baerman, Matthew, Dunstan Brown & Greville G. Corbett (eds.). 2015. Understanding and measuring morphological complexity. Oxford: Oxford University Press.
Barth, Danielle & Nicolas Evans (eds.). 2017. The Social Cognition Parallax Corpus (SCOPIC) (Language documentation and conservation special publication no. 12). Honolulu: University of Hawai’i Press.
Bentz, Christian & Dimitrios Alikaniotis. 2016. The word entropy of natural languages. arXiv preprint arXiv:1606.06996. Available at: (last access 2 December 2022).
Bentz, Christian, Tatyana Ruzsics, Alexander Koplenig & Tanja Samardžić. 2016. A comparison between morphological complexity measures: Typological data vs. language corpora. In Dominique Brunato, Felice Dell’Orletta, Giulia Venturi, Thomas François & Philippe Blache (eds.), Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC), 142–153. Osaka, Japan, December, 2016. As a part of COLING 2016. 26th International Conference on Computational Linguistics.
Bentz, Christian, Ximena Gutierrez-Vasques, Olga Sozinova & Tanja Samardžić. 2022. Complexity trade-Offs and equi-complexity in natural languages: A meta-analysis. Linguistics Vanguard.
Bickel, Balthasar & Johanna Nichols. 2013. Chapter 22: Inflectional synthesis of the verb, In Matthew S. Dryer & Martin Haspelmath (eds.). The world atlas of language structures online. Leipzig: Max Planck Institute for Evolutionary Anthropology. Available at: [URL] (last access 2 December 2022).
Bickel, Balthasar, Johanna Nichols, Taras Zakharko, Alena Witzlack-Makarevich, Kristine Hildebrandt, Michael Rießler, Lennart Bierkandt, Fernando Zúñiga & John B. Lowe. 2022. The AUTOTYP database (v1.0.0) [Data set]. Zenodo. Available at: [URL] (last access 2 December 2022).
Bisang, Walter. 2014. Overt and hidden complexity–Two types of complexity and their implications. Poznan Studies in Contemporary Linguistics 50(2). 127–143.
Bisang, Walter. 2015. Hidden complexity–the neglected side of complexity and its implications. Linguistics Vanguard 1(1). 177–187.
Blyth, Colin R. 1972. On Simpson’s paradox and the sure-thing principle. Journal of the American Statistical Association 67(338). 364–366.
Choenni, Rochelle & Ekaterina Shutova. 2020. What does it mean to be language-agnostic? Probing multilingual sentence encoders for typological properties. arXiv e-prints arXiv:2009.12862. Available at: (last access 2 December 2022).
Christodouloupoulos, Christos & Mark Steedman. 2015. A massively parallel corpus: The Bible in 100 languages. Language Resources and Evaluation 49(2). 375–395.
Cohen Priva, Uriel. 2017. Not so fast: Fast speech correlates with lower lexical and structural information. Cognition 1601. 27–34.
Çöltekin, Çağri & Taraka Rama. 2022. What do complexity measures measure? Correlating and validating corpus-based measures of morphological complexity. Linguistics Vanguard.
Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer & Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116. Available at: (last access 2 December 2022).
Cotterell, Ryan, Christo Kirov, Mans Hulden & Jason Eisner. 2019. On the complexity and typology of inflectional morphological systems. Transactions of the Association for Computational Linguistics 71. 327–342.
Coupé, Christophe, Oh Yoon Mi, Dan Dediu & François Pellegrino. 2019. Different languages, similar encoding efficiency: Comparable information rates across the human communicative niche. Science Advances 5(9). eaaw2594.
Covington, Michael A. & Joe D. McFall. 2010. Cutting the Gordian knot: The Moving-Average Type-Token Ratio (MATTR). Journal of Quantitative Linguistics 17(2). 94–100.
de Marneffe, Marie-Catherine, Christopher D. Manning, Joakim Nivre & Daniel Zeman. 2021. Universal Dependencies. Computational Linguistics 47(2). 255–308.
Derbyshire, Desmond C. & Doris L. Payne. 1990. Noun classification systems of Amazonian languages. In Doris L. Payne (ed.), Amazonian linguistics: Studies in lowland South American languages, 243–272. Austin: University of Texas Press.
Dixon, Robert M. W. 1988. A grammar of Boumaa Fijian. Chicago: University of Chicago Press.
Dryer, Matthew S. & Martin Haspelmath. 2013. The world atlas of language structures online. Leipzig: Max Planck Institute for Evolutionary Anthropology.
Easterday, Shelece, Matthew Stave, Marc Allassonnière-Tang & Frank Seifart. 2021. Syllable complexity and morphological synthesis: a well-motivated positive complexity correlation across subdomains. Frontiers in Psychology 121. 583. Available at: (last access 5 December 2022).
Ehret, Katharina & Benedikt Szmrecsanyi. 2016. An information-theoretic approach to assess linguistic complexity. In Raffaela Baechler & Guido Seiler (eds.). Complexity, isolation, and variation, 71–94. Berlin: De Gruyter Mouton.
Ehret, Katharina, Alice Blumenthal-Dramé, Christian Bentz & Aleksandrs Berdicevskis. 2021. Meaning and measures: Interpreting and evaluating complexity metrics. Frontiers in Communication 61. 640510. Available at: (last access 5 December 2022).
Erdmann, Alexander, Salam Khalifa, Mai Oudah, Nizar Habash & Houda Bouamor. 2019. A little linguistics goes a long way: Unsupervised segmentation with limited language specific guidance. In Garrett Nicolai & Ryan Cotterell (eds.), Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, 113–124, Florence: Association for Computational Linguistics.
Frank, Stefan L. 2013. Uncertainty reduction as a measure of cognitive load in sentence comprehension. Topics in Cognitive Science 5(3). 475–494.
Gerz, Daniela, Ivan Vulić, Edoardo Maria Ponti, Roi Reichart & Anna Korhonen. 2018. On the relation between linguistic typology and (limitations of) multilingual language modeling. In Ellen Riloff, David Chiang, Julia Hockenmaier & Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 316–327, Brussels: Association for Computational Linguistics.
Gibson, Edward. 1998. Linguistic complexity: Locality of syntactic dependencies. Cognition 68(1). 1–76.
Greenberg, Joseph H. 1960. A quantitative approach to the morphological typology of language. International Journal of American Linguistics 26(3). 178–194.
Gutierrez-Vasques, Ximena & Victor Mijangos. 2020. Productivity and predictability for measuring morphological complexity. Entropy 22(1). 48.
Gutierrez-Vasques, Ximena, Christian Bentz, Olga Sozinova & Tanja Samardzic. 2021. From characters to words: The turning point of BPE merges. In Paola Merlo, Jorg Tiedemann & Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 3454–3468. Association for Computational Linguistics.
Haig, Geoffrey & Stefan Schnell (eds.). 2022. Multi-CAST: Multilingual corpus of annotated spoken texts. Version 2108. Available at: [URL] (last access 2 December 2022).
Haig, Geoffrey, Stefan Schnell & Frank Seifart (eds.). 2021. Doing corpus-based typology with spoken language corpora: State of the art. Honolulu: University of Hawai’i Press.
Hawkins, John A. 2004. Efficiency and complexity in grammars. Oxford: Oxford University Press.
Hollenstein, Nora, Federico Pirovano, Ce Zhang, Lena Jäger & Lisa Beinborn. 2021. Multilingual language models predict human reading behavior. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cottrell, Tanmoy Chakraborty & Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 106–123. Association for Computational Linguistics.
Hollenstein, Nora, Emmanuele Chersoni, Cassandra Jacobs, Yohei Oseki, Laurent Prévot & Enrico Santus. 2022. CMCL 2022 Shared Task on Multilingual and Crosslingual Prediction of Human Reading Behavior. In Emmanuele Chersoni, Nora Hollestein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot & Enrico Santus (eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, 121–129. Dublin: Association for Computational Linguistics.
Johnson, Wendell. 1944. Studies in language behavior: I. A program of research. Psychological Monographs 56(2). 1–15.
Juola, Patrick. 1998. Measuring linguistic complexity: The morphological tier. Journal of Quantitative Linguistics 5(3). 206–213.
Kettunen, Kimmo, Markus Sadeniemi, Tiina Lindh-Knuutila & Timo Honkela. 2006. Analysis of EU languages through text compression. In Tapio Salakoski, Filip Ginter, Sampo Pyysalo & Tapio Pahikkala (eds.), International Conference on Natural Language Processing (in Finland), 99–109. Berlin: Springer.
Kettunen, Kimmo. 2014. Can type-token ratio be used to show morphological complexity of languages? Journal of Quantitative Linguistics 21(3). 223–245.
Koplenig, Alexander, Peter Meyer, Sascha Wolfer & Carolin Müller-Spitzer. 2017. The statistical trade-off between word order and word structure – Large-scale evidence for the principle of least effort. PLoS ONE 12(3). e0173614.
Koplenig, Alexander. 2019. Language structure is influenced by the number of speakers but seemingly not by the proportion of non-native speakers. Royal Society Open Science 6(2). 181274. Available at: (last access 5 December 2022).
Kortmann, Bernd & Benedikt Szmrecsanyi. 2012. Linguistic complexity: Second language acquisition, indigenization, contact. Berlin: De Gruyter Mouton.
Kusters, Wouter. 2003. Linguistic complexity: The influence of social change on verbal inflection. Utrecht: Netherlands Graduate School of Linguistics.
Lake, Brenden M. & Gregory L. Murphy. 2021. Word meaning in minds and machines. arXiv preprint ArXiv:2008.01766. Available at: (last access 2 December 2022).
Lupyan, Gary & Rick Dale. 2010. Language structure is partly determined by social structure. PLoS ONE 5(1). e8559.
MacWhinney, Brian. 2005. The emergence of linguistic form in time. Connection Sciences 17(3–4). 191–211.
Maddieson, Ian. 2009. Calculating phonological complexity. In François Pellegrino, Egidio Marsico, Ioana Chitoran & Christophe Coupé (eds.). Approaches to Phonological Complexity, 83–110. Berlin: De Gruyter Mouton.
Maddieson, Ian, Sébastien Flavier, Egidio Marsico, Christophe Coupé & François Pellegrino. 2013. LAPSyd: Lyon-Albuquerque phonological systems database. In Frédéric Bimbot, Christophe Cerisara, Cécile Fougeron, Lori Lamel, François Pellegrino & Pascal Perrier (eds.), Proceedings of the 14th Interspeech Conference, Lyon, France, 3022–3026 Lyon: International Speech Communication Association (ISCA).
Malouf, Robert. 2017. Abstractive morphological learning with a recurrent neural network. Morphology 271. 431–458.
Mayer, Thomas & Michael Cysouw. 2014. Creating a massively parallel bible corpus. In Nicoletta Calzorari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), 3158–3163. Reykjavik: European Language Resources Association (ELRA).
McCarthy, Arya D. Christo Kirov, Matteo Grella, Amrit Nidhi, Patrick Xia, Kyle Gorman, Ekaterina Vylomova, Sabrina J. Mielke, Garrett Nicolai, Miikka Silfverberg, Timofey Arkhangelskiy, Nataly Krizhanovsky, Andrew Krizhanovsky, Elena Klyachko, Alexey Sorokin, John Mansfield, Valts Ernštreits, Yuval Pinter, Cassandra L. Jacobs, Ryan Cotterell, Mans Hulden & David Yarowsky. 2020. UniMorph 3.0: Universal Morphology. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (LREC 2020), 3922–3931. Marseille: European Language Resources Association (ELRA).
McCarthy, Philip M. & Scott Jarvis. 2010. MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods 421. 381–392.
Meister, Clara, Tiago Pimentel, Patrick Haller, Lena Jäger, Ryan Cotterell & Roger Levy. 2021. Revisiting the Uniform Information Density hypothesis. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia & Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 963–980. Punta Cana: Association for Computational Linguistics.
Merkx, Danny & Stefan L. Frank. 2021. Human sentence processing: Recurrence or attention? In Emmanuele Chersoni, Nora Hollenstein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot & Enrico Santus (eds.), Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, 12–22. Association for Computational Linguistics.
Mielke, Sabrina J., Ryan Cotterell, Kyle Gorman, Brian Roark & Jason Eisner. 2019. What kind of language is hard to language-model? In Anna Korhonen, David Traum & Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4975–4989. Florence: Association for Computational Linguistics.
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems 261. 3111–3119.
Moscoso del Prado, Fermin. 2011. The mirage of morphological complexity. In Laura Carlson, Christoph Hoelscher & Thomas F. Shipley (eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society, 3524–3529. Austin: Cognitive Science Society.
Mufwene, Salikoko S., Christophe Coupé & François Pellegrino. 2017. Complexity in language: Developmental and evolutionary perspectives. Cambridge: Cambridge University Press.
Nercesian, Verónica. 2014. Wordhood and the interplay of linguistic levels in synthetic languages. An empirical study on Wichi (Mataguayan, Gran Chaco). Morphology 241. 177–198.
Newman, Paul. 2003. Hausa and the Chadic languages. In Bernard Comrie (ed.) The major languages of South Asia, the Middle East and Africa, 177–192. London: Routledge.
Nichols, Johanna & Christian Bentz. 2019. Morphological complexity of languages reflects the settlement history of the Americas. In Katerina Harvati, Gerhard Jäger & Hugo Reyes-Centeno (eds.). New perspectives on the peopling of the Americas, 13–26. Tübingen: Kerns Verlag.
Oh, Yoon Mi. 2015. Linguistic complexity and information: Quantitative approaches. Lyon: University of Lyon Ph.D. dissertation.
Oh, Yoon Mi, Christophe Coupé, Egidio Marsico & François Pellegrino. 2015. Bridging phonological system and lexicon: Insights from a corpus study of functional load. Journal of Phonetics 531. 153–176.
Paschen, Ludger, François Delafontaine, Christoph Draxler, Susanne Fuchs, Matthew Stave & Frank Seifart. 2020. Building a time-aligned cross-linguistic reference corpus from language documentation data (DoReCo). In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk & Stelios Piperidis (eds.), Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), 2657–2666. Marseille: European Language Resources Association.
Pellegrino, François, Christophe Coupé & Egidio Marsico. 2011. A cross-language perspective on speech information rate. Language 87(3). 539–558.
Pimentel, Tiago, Brian Roark & Ryan Cotterell. 2020. Phonotactic complexity and its trade-offs. Transactions of the Association for Computational Linguistics 81. 1–18.
Pimentel, Tiago, Clara Meister, Elizabeth Salesky, Simone Teufel, Damián Blasi & Ryan Cotterell. 2021. A surprisal–duration trade-off across and within the world’s languages. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia & Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 949–962. Punta Cana: Association for Computational Linguistics.
Ponti, Edoardo Maria, Helen O’Horan, Yevgeni Berzak, Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekaterina Shutova & Anna Korhonen. 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics 45(3). 559–601.
Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei & Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog 1(8). 9.
Rust, Phillip, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder & Iryna Gurevych. 2020. How good is your tokenizer? On the monolingual performance of multilingual language models. arXiv preprint arXiv:2012.15613. Available at: (last access 2 December 2022).
Schrimpf, Martin, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua B. Tenenbaum & Evelina Fedorenko. 2021. The neural architecture of language: Integrative reverse-engineering converges on a model for predictive processing. Proceedings of the National Academy of Sciences 118(45). e2105646118.
Shosted, Ryan K. 2006. Correlating complexity: A typological approach. Linguistic Typology 10(1). 1–40.
Sinnemäki, Kaius & Di Garbo, Francesca. 2018. Language structures may adapt to the sociolinguistic environment, but it matters what and how you count: A typological study of verbal and nominal complexity. Frontiers in Psychology 91. 1141.
Thomason, Sarah Grey & Terrence Kaufman. 1992. Language contact, creolization, and genetic linguistics. Berkeley: University of California Press.
Thornell, Christina. 1997. The Sango language and its lexicon (Sêndâ-yângâ tî sängö). Vol. 321. Lund: Lund University.
Trudgill, Peter. 2001. Contact and simplification: Historical baggage and directionality in linguistic change. Linguistic Typology 5(2). 371–374.
Trudgill, Peter. 2011. Sociolinguistic typology: Social determinants of linguistic complexity. Oxford: Oxford University Press.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser & Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 301. 6000–6010.
Vera, Javier & Wenceslao Palma. 2020. Laplacian spectrum approach to linguistic complexity: A case study on indigenous languages of the Americas. Europhysics Letters 129(5). 58003.
von Prince, Kilu & Vera Demberg. 2018. POS tag perplexity as a measure of syntactic complexity. In Alekandrs Berdicevskis & Christian Bentz (eds.), Proceedings of the First Shared Task on Measuring Language Complexity, 20–25. Uppsala: Uppsala University, Department of Linguistics and Philology.
Wedel, Andrew, Abby Kaplan & Scott Jackson. 2013. High functional load inhibits phonological contrast loss: A corpus study. Cognition 128(2). 179–186.
Wilcox, Ethan Gotlieb, Jon Gauthier, Jennifer Hu, Peng Qian & Roger Levy. 2020. On the predictive power of neural language models for human real-time comprehension behavior. In Stephanie Denison, Michael Mack, Yang Xu & Blair C. Armstrong (eds.), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society, 1707–1713. Cognitive Science Society.
Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest & Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In Qun Liu & David Schlangen (eds.) Proceedings of the 2020 conference on empirical methods in natural language processing: System demonstrations, 38–45. Association for Computational Linguistics.
Wray, Alison & George W. Grace. 2007. The consequences of talking to strangers: Evolutionary corollaries of socio-cultural influences on linguistic form. Lingua 117(3). 543–578.
Wu, Shang-Yu, Rei-Jane Huang & I-Fang Tsai. 2019. The applicability of D, MTLD, and MATTR in Mandarin–speaking children. Journal of Communication Disorders 771. 71–79.
Cited by (1)
Cited by one other publication
Brosa-Rodríguez, Antoni, M. Dolores Jiménez-López & Adrià Torrens-Urrutia
2023.
Exploring the complexity of natural languages: A fuzzy evaluative perspective on Greenberg universals.
AIMS Mathematics 9:1
► pp. 2181 ff.
This list is based on CrossRef data as of 5 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.