Article published in:
Empirical Studies of Literariness
Edited by Massimo Salgaro and Paul Sopčák
[Scientific Study of Literature 8:1] 2018
► pp. 165208
Abramo, F., Gambino, R., Pulvirenti, G., Xue, S., Sylvester, T., Mangen, A., Papp-Zipernovszky, O., Lüdtke, J. & Jacobs, A. M.
(2018) A qualitative-quantitative analysis of Shakespeare’s Sonnet 60. Style, in revision.Google Scholar
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
(2012) The power of emotional valence-from cognitive to affective processes in reading. Frontiers in Human Neuroscience, 6(192). CrossrefGoogle Scholar
(2014) Fact vs fiction: How paratextual information shapes our reading processes. Social Cognitive and Affective Neuroscience, 9(1), 22–29. CrossrefGoogle Scholar
Andrzejewski, D., Zhu, X., & Craven, M.
(2009) Incorporating domain knowledge into topic modeling via dirichlet forest priors. ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32, New York, NY: ACM. CrossrefGoogle Scholar
Armeni, K., Willems, R. M., & Frank, S. L.
(2017) Probabilistic language models in cognitive neuroscience: promises and pitfalls. Neuroscience and Biobehavioral Reviews, 831, 579–588. CrossrefGoogle Scholar
Aryani, A., Jacobs, A. M., & Conrad, M.
(2013) Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology, 4(654). CrossrefGoogle Scholar
Aryani, A., Kraxenberger, M., Ullrich, S., Jacobs, A. M., & Conrad, M.
(2016) Measuring the basic affective tone of poems via phonological saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts, 101, 191–204. CrossrefGoogle Scholar
Bambini, V., Canal, P., Resta, D., & Grimaldi, M.
(2018) Time course and neurophysiological underpinnings of metaphor in literary context. Discourse Processes. CrossrefGoogle Scholar
Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E.
(2009) The WaCky wide web: A collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 431, 209–226. CrossrefGoogle Scholar
Berlyne, D. E.
(1971) Aesthetics and psychobiology. New York, NY: Appleton-Century-Crofts.Google Scholar
Bestgen, Y., & Vincze, N.
(2012) Checking and boot-strapping lexical norms by means of word similarity indexes. Behavior Research Methods, 44(4), 998–1006. CrossrefGoogle Scholar
Bird, S., Klein, E., & Loper, E.
(2009) Natural language processing with Python. O’Reilly Media.Google Scholar
Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
(2013) When we like what we know – a parametric fMRI analysis of beauty and familiarity. Brain Language, 1241, 1–8. CrossrefGoogle Scholar
Bornet, C., & Kaplan, F.
(2017) A simple set of rules for characters and place recognition in French novels. Frontiers in Digital Humanities, 4(6). CrossrefGoogle Scholar
Braun, M., Jacobs, A. M., Hahne, A., Ricker, B., Hofmann, M., & Hutzler, F.
(2006) Model-generated lexical activity predicts graded ERP amplitudes in lexical decision. Brain Research, 1073–1074, 431–439.Google Scholar
Bradley, M. M., & Lang, P. J.
(1999) Affective norms for English words (ANEW): Stimuli instruction and affective ratings technical report C-1. Gainesville: University of Florida.Google Scholar
Braun, M., Hutzler, F., Ziegler, J. C., Dambacher, M., & Jacobs, A. M.
(2009) Pseudo homophone effects provide evidence of early lexico-phonological processing in visual word recognition. Human Brain Mapping, 30(7), 1977–1989. CrossrefGoogle Scholar
Braun, M., Hutzler, F., Munte, T. F., Rotte, M., Dambacher, M., Richlan, F., & Jacobs, A. M.
(2015) The neural bases of the pseudohomophone effect: Phonological constraints on lexico-semantic processing in reading. Neuroscience, 2951, 151–163. CrossrefGoogle Scholar
Breen, M.
(2014) Empirical investigations of the role of implicit prosody in sentence processing. Language and Linguistics Compass, 8(2), 37–50. CrossrefGoogle Scholar
Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M.
(2011) Discrete emotion norms for nouns: Berlin a ective word list (DENN – BAWL). Behavior Research Methods, 43(2), 441–448. CrossrefGoogle Scholar
Brunswik, E.
(1956) Perception and the representative design of psychological experiments (2nd ed.). Berkeley: University of California Press.Google Scholar
Burke, M.
(2013) The rhetorical neuroscience of style: On the primacy of style elements during literary discourse processing. Journal of Literary Semantics, 421, 199–215. CrossrefGoogle Scholar
Burrows, J. F.
(1986) Modal verbs and moral principles: an aspect of Jane Austen’s style, Literary and Linguistic Computing, 11, 9–23. CrossrefGoogle Scholar
Burrows, J.
(2002) ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Literary and Linguistic Computing, 17(3), 267–87. CrossrefGoogle Scholar
Busemann, A.
(1948) Stil und Charakter. Untersuchungen zur Psychologie der individuellen Redeform, Meisenheim.Google Scholar
Castiglione, D.
(2017) Difficult poetry processing: Reading times and the narrativity hypothesis. Language and Literature, 261, 99–121. CrossrefGoogle Scholar
Citron, F. M. M., Weekes, B. S., & Ferstl, E. C.
(2012) How are affective word ratings related to lexico-semantic properties? Evidence from the Sussex Affective Word List (SAWL). Applied Psycholinguist, 351, 313–331. CrossrefGoogle Scholar
Crossley, S. A., Kyle, K., & McNamara, D. S.
(2017) Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 49(3), 803–821. CrossrefGoogle Scholar
Dalvean, M.
(2015) Ranking contemporary American poems. Digital Scholarship in the Humanities, 30, 1. CrossrefGoogle Scholar
Davies, M.
(2009) The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. International Journal of Corpus Linguistics, 141, 159–190. CrossrefGoogle Scholar
Davis, P.
(2013) Reading and the reader. Oxford, United Kingdom: Oxford University Press.Google Scholar
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.
(1990) Indexing by latent semantic analysis. Journal of the American Society for Information Science, 411, 391–407. CrossrefGoogle Scholar
Delmonte, R.
(2016) Exploring Shakespeare’s Sonnets with SPARSAR. Linguistics and Literature Studies, 4(1), 61–95. CrossrefGoogle Scholar
De Smedt, T., & Daelemans, W.
(2012) Pattern for Python. Journal of Machine Learning Research, 131, 2031–2035.Google Scholar
Eder, M.
(2013) Mind your corpus: Systematic errors in authorship attribution. Literary and Linguistic Computing, 28(4), 604–614. CrossrefGoogle Scholar
Eder, M., Rybicki, J., & Kestemont, M.
(2016) Stylometry with R: A package for computational text analysis. R Journal, 8(1), 107–121. CrossrefGoogle Scholar
Epstein, R.
(2004) Consciousness, art and the brain: Lessons from Marcel Proust. Consciousness and Cognition, 131, 213–240. CrossrefGoogle Scholar
Fechner, G. T.
(1876) Vorschule der Ästhetik, Vol. 21. Leipzig: Breitkopf & Härtel.Google Scholar
Fónagy, I.
(1961) Communication in poetry. Word, 171, 194–218. CrossrefGoogle Scholar
(1983/1991) La vive voix: essais de psycho-phonetique. Paris: Payot.Google Scholar
Forsyth, R. S.
(2000) Pops and flops: Some properties of famous English poems. Empirical Studies of the Arts, 18(1), 49–67. CrossrefGoogle Scholar
Forsyth, R. S., & Holmes, D. I.
(1996) Feature-finding for text classification. Literary and Linguistic Computing, 111, 163–174. CrossrefGoogle Scholar
Fucks, W.
(1955) Mathematische Analyse von Sprachelementen, Sprachstil und Sprachen, Köln. CrossrefGoogle Scholar
Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z.
(2004) Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 361, 193–202. CrossrefGoogle Scholar
Hanauer, D.
(2017) Towards a critical mass of accumulated knowledge in the field of scientific literary studies. Scientific Study of Literature, 7(1), 1–3. CrossrefGoogle Scholar
Hayward, M.
(1991) A connectionist model of poetic meter. Poetics, 201, 303–317. CrossrefGoogle Scholar
Henrich, V., Hinrichs, E., & Suttner, K.
(2012) Automatically linking germanet to Wikipedia for harvesting corpus examples for germanet senses. Journal for Language Technology and Computational Linguistics, 271, 1–19.Google Scholar
Herrmann, J. B., van Dalen-Oskam, K., & Schöch, C.
(2015) Revisiting style, a key concept in literary studies. Journal of Literary Theory, 9(1), 25–52.Google Scholar
Hoffstaedter, P.
(1987) Poetic text processing and its empirical investigation. Poetics, 161, 75–91. CrossrefGoogle Scholar
Hofmann, M. J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, A. M.
(2011) Remembering words in context as predicted by an associative read-out model. Frontiers in Psychology, 2(252). CrossrefGoogle Scholar
Hofmann, M. J., & Jacobs, A. M.
(2014) Interactive activation and competition models and semantic context: From behavioral to brain data. Neuroscience & Biobehavioral Reviews, 461, 85–104. CrossrefGoogle Scholar
Hogan, P. C.
(2003) Cognitive science, literature and the arts. New York, NY: Routledge.Google Scholar
Hollis, G., Westbury, C., & Lefsrud, L.
(2017) Extrapolating human judgments from skip-gram vector representations of word meaning. The Quarterly Journal of Experimental Psychology, 1–45. CrossrefGoogle Scholar
Hoorn, J., Frank, S., Kowalczyk, W., & van der Ham, F.
(1999) Neural network identification of poets using letter sequences. Literary and Linguistic Computing, 14(3), 311–338. CrossrefGoogle Scholar
Hoover, D. L.
(2007) Corpus stylistics, stylometry, and the styles of Henry James. Style, 41(2), 174–203.Google Scholar
Hoshi, H., & Menninghaus, W.
(2018) The eye tracks the aesthetic appeal of sentences. Journal of Vision, 18(3). CrossrefGoogle Scholar
Hsu, C. T., Jacobs, A. M., Citron, F., & Conrad, M.
(2015) The emotion potential of words and passages in reading harry potter: An fMRI study. Brain and Language, 1421, 96–114. CrossrefGoogle Scholar
Hutto, C. J., & Gilbert, E. E.
(2014) VADER: A parsimonious rule-based model for sentiment analysis of social media rext. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI.Google Scholar
Jacobs, A. M.
(2015a) Towards a neurocognitive poetics model of literary reading. In R. Willems (Ed.), Cognitive neuroscience of natural language use (pp. 135–159). Cambridge, United Kingdom: Cambridge University Press. CrossrefGoogle Scholar
(2015b) Neurocognitive poetics: Methods and models for investigating the neuronal and cognitive-affective bases of literature reception. Frontiers in Human Neuroscience, 9, 186. CrossrefGoogle Scholar
Jacobs, A.
(2015c) The scientific study of literary experience: Sampling the state of the art. Scientific Study of Literature, 5(2), 139–170. CrossrefGoogle Scholar
Jacobs, A. M.
(2017) Quantifying the beauty of words: A neurocognitive poetics perspective. Frontiers in Human Neuroscience, 11, 622. CrossrefGoogle Scholar
(2018) The Gutenberg English Poetry Corpus: Exemplary quantitative narrative analyses. Frontiers in Digital Humanities, 5(5). CrossrefGoogle Scholar
Jacobs, A. M., & Kinder, A.
(2017) The brain is the prisoner of thought: A machine-learning assisted quantitative narrative analysis of literary metaphors for use in Neurocognitive Poetics. Metaphor and Symbol, 32(3), 139–160. CrossrefGoogle Scholar
(2018) What makes a metaphor literary? Answers from two computational studies. Metaphor and Symbol, in press. CrossrefGoogle Scholar
Jacobs, A. M., & Lüdtke, J.
(2017) Immersion into narrative and poetic worlds: A neurocognitive poetics perspective. In F. Hakemulder, M. M. Kuijpers, E. S. Tan, K. Bálint, & M. M. Doicaru (Eds.), Narrative absorption (pp. 69–96). Amsterdam, Netherlands: John Benjamins. CrossrefGoogle Scholar
Jacobs, A. M., & Willems, R. M.
(2017) The fictive brain: Neurocognitive correlates of engagement in literature. Review of General Psychology. 221, 147–160. CrossrefGoogle Scholar
Jacobs, A. M., Võ, M. L. H., Briesemeister, B. B., Conrad, M., Hofmann, M. J., Kuchinke, L., Lüdtke, J., & Braun, M.
(2015) 10 years of BAWLing into a ective and aesthetic processes in reading: What are the echoes? Frontiers in Psychology, 6, 714. CrossrefGoogle Scholar
Jacobs, A. M., Hofmann, M. J., & Kinder, A.
(2016) On elementary affective decisions: To like or not to like, that is the question. Frontiers in Psychology, 7, 1836. CrossrefGoogle Scholar
Jacobs, A. M., Lüdtke, J., Aryani, A., Meyer-Sickendiek, B., & Conrad, M.
(2016) Mood- empathic and aesthetic responses in poetry reception: A model-guided, multilevel, multimethod approach. Scientific Study of Literature, 6(1), 87–130. CrossrefGoogle Scholar
Jacobs, A. M., Schuster, S., Xue, S., & Lüdtke, J.
(2017) What’s in the brain that ink may character.…: A quantitative narrative analysis of Shakespeare’s 154 sonnets for use in Neurocognitive Poetics. Scientific Study of Literature, 7(1), 4–51. CrossrefGoogle Scholar
James, W.
(1890/1950) The principles of psychology. New York, NY: Dover.Google Scholar
Jannidis, F., & Lauer, G.
(2014) Burrows’s delta and its use in German literary history. In M. Erlin & L. Tatlock (Eds.), Distant readings: Topologies of German culture in the long nineteenth century (pp. 29–54). Rochester, NY: Camden House.Google Scholar
Jurafsky, D., & Martin, J. H.
Kao, J., & Jurafsky, D.
(2012) A computational analysis of style, affect, and imagery in contemporary poetry. NAACL Workshop on Computational Linguistics for Literature. http://​www​.stanford​.edu​/jurafsky​/kaojurafsky12​.pdf
Kaplan, D., & Blei, D.
(2007) A computational approach to style in American poetry. IEEE Conference on Data Mining.Google Scholar
Katz, A. N., Paivio, A., & Marschark, M.
(1985) Poetic comparisons: Psychological dimensions of metaphoric processing. Journal of Psycholinguistic Research, 141, 365–383. CrossrefGoogle Scholar
Katz, A., Paivio, A., Marschark, M., & Clark, J.
(1988) Norms for 204 literary and 260 non- literary metaphors on psychological dimensions. Metaphor and Symbolic Activity, 3(4), 191–214. CrossrefGoogle Scholar
Keats, J.
(1958) Letter 199, To George and Georgiana Keats. In H. Rollins (Ed.), The letters of John Keats (Vol. 21). Cambridge, Massachusetts: Harvard University Press.Google Scholar
Keidel, J. L., Davis, P. M., Gonzalez-Diaz, V., Martin, C. D., & Thierry, G.
(2013) How Shakespeare tempests the brain: Neuroimaging insights. Cortex, 49(4). CrossrefGoogle Scholar
Kintsch, W.
(1980) Learning from text, levels of comprehension, or: why anyone would read a story anyway. Poetics, 91, 87–98. CrossrefGoogle Scholar
(2000) Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 71, 257–266. CrossrefGoogle Scholar
Kintsch, W., & van Dijk, T. A.
(1978) Toward a model of text comprehension and production. Psychological Review, 851, 363–394. CrossrefGoogle Scholar
Kraxenberger, M.
(2017) On sound-emotion associations in poetry (Doctoral dissertation). Freie Universität Berlin.Google Scholar
Kraxenberger, M., & Menninghaus, W.
(2016) Emotional effects of poetic phonology, word positioning and dominant stress peaks in poetry. Scientific Study of Literature, 6(2), 298–313. CrossrefGoogle Scholar
(2017) Affinity for poetry and aesthetic appreciation of joyful and sad poems. Frontiers in Psychology, 7, 2051.Google Scholar
Kucera, H., & Francis, W. N.
(1967) Computational analysis of present-day American English. Providence, RI: Brown University Press.Google Scholar
Kutas, M.
(2006) One lesson learned: Frame language processing – literal and figurative – as a human brain function. Metaphor and Symbol, 211, 285–325. CrossrefGoogle Scholar
Larsen, S. E., & Seilman, U.
(1988) Personal remindings while reading literature. Text, 81, 411–429. CrossrefGoogle Scholar
Lea, R. B., Rapp, D. N., Elfenbein, A., Mitchel, A. D., & Romine, R. S.
(2008) Sweet silent thought: Alliteration and resonance in poetry comprehension. Psychological Science, 19(7), 709–716. CrossrefGoogle Scholar
Leech, G. N.
(1969) A linguistic guide to English poetry. London, United Kingdom: Longman.Google Scholar
Lehne, M., Engel, P., Menninghaus, W., Jacobs, A. M., & Koelsch, S.
(2015) Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference. PLOS One, 10(5). CrossrefGoogle Scholar
Louwerse, M. M.
(2001) An analytic and cognitive parametrization of coherence relations. Cognitive Linguistics, 12(3), 291–315.Google Scholar
Lüdtke, J., Meyer-Sickendiek, B., & Jacobs, A. M.
(2014) Immersing in the stillness of an early morning: Testing the mood empathy hypothesis in poems. Psychology of Aesthetics, Creativity, and the Arts, 81, 363–377. CrossrefGoogle Scholar
Mandera, P., Keuleers, E., & Brysbaert, M.
(2015) How useful are corpus-based methods for extrapolating psycholinguistic variables? The Quarterly Journal of Experimental Psychology, 68(8), 1623–1642. CrossrefGoogle Scholar
Marschark, M., Katz, A. N., & Paivio, A.
(1983) Dimensions of metaphor. Journal of Psycholinguistic Research, 121, 17–40. CrossrefGoogle Scholar
Martindale, C.
(1978) The evolution of English poetry. Poetics, 71, 231–248. CrossrefGoogle Scholar
Menninghaus, W., Bohrn, I. C., Altmann, U., Lubrich, O., & Jacobs, A. M.
(2014) Sounds funny? Humor effects of phonological and prosodic figures of speech. Psychology of Aesthetics, Creativity, and the Arts, 8(1), 71. CrossrefGoogle Scholar
Miall, D. S.
(2001) Sounds of contrast: An empirical approach to phonemic iconicity. Poetics, 291, 55–70. CrossrefGoogle Scholar
Miall, D. S., & Kuiken, D.
(1994) Foregrounding, defamiliarization and affect: Response to literary stories. Poetics, 221, 389–407. CrossrefGoogle Scholar
(2002) The effects of local phonetic contrasts in readers’ responses to a short story. Empirical Studies of the Arts, 201, 157–175. CrossrefGoogle Scholar
Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, … Lieberman Aiden, E.
(2011) Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176–182. CrossrefGoogle Scholar
Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013) Efficient estimation of word representations in vector space. Retrieved from https://​arxiv​.org​/abs​/1301​.3781
Miller, G. A.
(1995) WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41. CrossrefGoogle Scholar
Neuhäuser, R.
(1991) Sound and meaning in romantic poetry: Preseren’s Poeziie. Russian Literature, 85–108. CrossrefGoogle Scholar
O’Sullivan, N., Davis, P., Billington, J., Gonzalez-Diaz, V., & Corcoran, R.
(2015) “Shall I compare thee”: e neural basis of literary awareness, and its bene ts to cognition. Cortex, 731, 144–157. CrossrefGoogle Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V.
(2011) scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 121, 2825–2830.Google Scholar
Pennebaker, J. W., & Francis, M. E.
(1999) Linguistic inquiry and word count (LIWC). Mahwah, NJ: Erlbaum.Google Scholar
Petrie, K. J., Pennebaker, J. W., & Sivertsen, B.
(2008) Things we said today: A linguistic analysis of the Beatles. Psychology of Aesthetics, Creativity, and the Arts, 21, 197–202. CrossrefGoogle Scholar
Recchia, G., & Louwerse, M. M.
(2015) Reproducing affective norms with lexical co-occurrence statistics: Predicting valence, arousal, and dominance. The Quarterly Journal of Experimental Psychology, 68(8), 1584–1598. CrossrefGoogle Scholar
Rehuřek, R., & Sojka, P.
(2010) Software framework for topic modelling with large corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp. 45–50). Valletta, Malta: ELRA.Google Scholar
Riegel, M., Wierzba, M., Wypych, M., Zurawski, L., Jednorog, K., Grabowska, A., & Marchewka, A.
(2015) Nencki Affective Word List (NAWL): Cultural adaptation of the Berlin Affective Word List-Reloaded (BAWL-R) for Polish. Behavior Research Methods, 471, 1222–1236. CrossrefGoogle Scholar
Rouse, B., & Bennett, J. R.
(1967) Editorial. Style, 1(1), v–vii.Google Scholar
Salgaro, M.
(2015) How literary can literariness be? Methodological problemsin the study of foregrounding. Scientific Study of Literature, 5(2), 229–249. CrossrefGoogle Scholar
Schmidtke, D. S., Schröder, T., Jacobs, A. M., & Conrad, M.
(2014a) ANGST: Affective norms for German sentiment terms, derived from the affective norms for English words. Behavior Research Methods, 461, 1108–1118. CrossrefGoogle Scholar
Schmidtke, D. S., Conrad, M., & Jacobs, A. M.
(2014b) Phonological iconicity. Frontiers in Psychology, 5, 80. CrossrefGoogle Scholar
Schrott, R., & Jacobs, A. M.
(2011) Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (Brain and Poetry: How We Construct Our Realities). München: Hanser.Google Scholar
Shen, Y.
(2008) Metaphor and poetic figures. In R. W. Gibbs, Jr. (Ed.), The Cambridge handbook of metaphor and thought (pp. 295–307). Cambridge, United Kingdom: Cambridge University Press. CrossrefGoogle Scholar
Simonton, D. K.
(1989) Shakespeare’s sonnets: A case of and for single-case historiometry. Journal of Personality, 57(3), 695–721. CrossrefGoogle Scholar
(1990) Lexical choices and aesthetic success: A computer content analysis of 154 Shakespeare sonnets. Computers and the Humanities, 241, 254–264.Google Scholar
Steen, G.
(2004) Can discourse properties of metaphor affect metaphor recognition? Journal of Pragmatics, 36(7), 1295–1313. CrossrefGoogle Scholar
Steyvers, M., Smyth, P., & Chemuduganta, C.
(2011) Combining background knowledge and learned topics. Topics in Cognitive Science, 31, 18–47. CrossrefGoogle Scholar
Strobl, C., Malley, J., & Tutz, G.
(2009) An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348. CrossrefGoogle Scholar
Stockwell, P.
(2009) The cognitive poetics of literary resonance. Language and Cognition, 11, 25–44. CrossrefGoogle Scholar
Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M.
(1966) The general inquirer: A computer approach to content analysis. Cambridge: Massachusetts Institute of Technology Press.Google Scholar
Tsur, R.
(1992) What makes sound patterns expressive? The poetic mode of speech perception. Durham, NC: Duke University Press. CrossrefGoogle Scholar
(1997) Sound effects of poetry: Critical impressionism, reductionism and cognitive poetics. Pragmatics & Cognition, 51, 283–304. CrossrefGoogle Scholar
Turner, F., & Poeppel, E.
(1983) The neural lyre: Poetic meter, the brain and time. Poetry Magazine, 121, 277–309.Google Scholar
Turney, P. D., & Littman, M. L.
(2003) Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4), 315–346. CrossrefGoogle Scholar
Ullrich, S., Aryani, A., Kraxenberger, M., Jacobs, A. M., & Conrad, M.
(2017) On the relation between the general affective meaning and the basic sublexical, lexical, and interlexical features of poetic texts – A case study using 57 poems of H. M. Enzensberger. Frontiers in Psychology, 7, 2073. CrossrefGoogle Scholar
van den Hoven, E., Hartung, F., Burke, M., & Willems, R. M.
(2016) Individual differences in sensitivity to style during literary reading: Insights from eye-tracking. Collabra, 21, 1–16. CrossrefGoogle Scholar
van Peer, W., Hakemulder, J., & Zyngier, S.
(2007) Lines on feeling: Foregrounding, aesthetics and meaning. Language and Literature, 161, 197–213. CrossrefGoogle Scholar
Vendler, H.
(1997) The art of Shakespeare’s sonnets. Cambridge, MA: Harvard University Press.Google Scholar
Võ, M. L. H., Jacobs, A. M., & Conrad, M.
(2006) Cross-validating the Berlin affective word list. Behavioral Research Methods, 381, 606–609. CrossrefGoogle Scholar
Võ, M. L. H., Conrad, M., Kuchinke, L., Hartfeld, K., Hofmann, M. J., & Jacobs, A. M.
(2009) The Berlin Affective Word List reloaded (BAWL-R). Behavioral Research Methods, 411, 534–539. CrossrefGoogle Scholar
Warriner, A. B., Kuperman, V., & Brysbaert, M.
(2013) Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 451, 1191–1207. CrossrefGoogle Scholar
Westbury, C., Keith, J., Briesemeister, B. B., Hofmann, M. J., & Jacobs, A. M.
(2015) Avoid violence, rioting, and outrage; approach celebration, delight, and strength: Using large text corpora to compute valence, arousal, and the basic emotions. Quarterly Journal of Experimental Psychology, 681, 1599–1622. CrossrefGoogle Scholar
Whissell, C.
(1999) Phonosymbolism and the emotional nature of sounds: Evidence of the preferential use of particular phonemes in texts of differing emotional tone. Perceptual and Motor Skills, 891, 19–48. CrossrefGoogle Scholar
Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A.
(2016) Prediction during natural language comprehension. Cerebral Cortex, 261, 2506–2516. CrossrefGoogle Scholar
Wu, Z., & Palmer, M.
(1994) Verbs semantics and lexical selection. Proceedings of the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages 133–138, Stroudsburg, PA, USA. Association for Computational Linguistics. CrossrefGoogle Scholar
Wundt, W. M.
(1874) Grundzüge der Physiologischen Psychologie. Leipzig: Engelmann.Google Scholar
Xue, X., Giordano, D., Lüdtke, J., Gambino, R., Pulvirenti, G., Spampinato, C., & Jacobs, A. M.
(2017) Weary with toil, I haste me to my bed: Eye tracking Shakespeare sonnets. Talk given at the 19th European Conference on Eye Movements, Wuppertal, Germany, 2017.
Yaron, I.
(2008) What is a “difficult” poem? Towards a definition. Journal of Literary Semantics, 37(2), 129–150. CrossrefGoogle Scholar
Ziegler, J. C., Jacobs, A. M., & Klueppel, D.
(2001) Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Journal of Experimental Psychology: Human Perception & Performance, 271, 547–559.Google Scholar
Cited by

Cited by 7 other publications

Jacobs, Arthur M.
2019. Sentiment Analysis for Words and Fiction Characters From the Perspective of Computational (Neuro-)Poetics. Frontiers in Robotics and AI 6 Crossref logo
Jacobs, Arthur M., Berenike Herrmann, Gerhard Lauer, Jana Lüdtke & Sascha Schroeder
2020. Sentiment Analysis of Children and Youth Literature: Is There a Pollyanna Effect?. Frontiers in Psychology 11 Crossref logo
Jacobs, Arthur M. & Annette Kinder
2019. Computing the Affective-Aesthetic Potential of Literary Texts. AI 1:1  pp. 11 ff. Crossref logo
Jacobs, Arthur M. & Annette Kinder
2022. Computational Models of Readers' Apperceptive Mass. Frontiers in Artificial Intelligence 5 Crossref logo
Papp-Zipernovszky, Orsolya, Anne Mangen, Arthur Jacobs & Jana Lüdtke
2021. Shakespeare sonnet reading: An empirical study of emotional responses. Language and Literature: International Journal of Stylistics  pp. 096394702110546 ff. Crossref logo
Usée, Franziska, Arthur M. Jacobs & Jana Lüdtke
2020. From Abstract Symbols to Emotional (In-)Sights: An Eye Tracking Study on the Effects of Emotional Vignettes and Pictures. Frontiers in Psychology 11 Crossref logo
Xue, Shuwei, Arthur M. Jacobs & Jana Lüdtke
2020. What Is the Difference? Rereading Shakespeare’s Sonnets —An Eye Tracking Study. Frontiers in Psychology 11 Crossref logo

This list is based on CrossRef data as of 23 april 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.