Article published in:
Empirical Studies of LiterarinessEdited by Massimo Salgaro and Paul Sopčák
[Scientific Study of Literature 8:1] 2018
► pp. 165–208
(Neuro-)Cognitive poetics and computational stylistics
Arthur M. Jacobs | Freie Universität Berlin
This perspective paper discusses four general desiderata of current computational stylistics and
(neuro-)cognitive poetics concerning the development of (a) appropriate databases/training corpora, (b) advanced
qualitative-quantitative narrative analysis (Q2NA) and machine learning tools for feature extraction, (c) ecologically valid
literary test materials, and (d) open-access reader-response data banks. In six explorative computational stylistics studies, it
introduces a number of tools that provide QNA indices of the foregrounding potential at the sublexical, lexical, inter- and
supralexical levels for poems by Shakespeare, Blake, or Dickens. These concern lexical diversity and aesthetic potential,
sentiment analysis, sublexical sonority scores or phrase structure, and topics analysis. The results illustrate the complex
interplay of stylistic features and the necessity for theoretical guidance and interdisciplinary cooperation in selecting adequate
training corpora, QNA tools, test texts, and response measures.
Keywords: neurocognitive poetics, quantitative narrative analysis, computational stylistics, digital literary studies, neuroaesthetics, affective-aesthetic processes, literary reading
Article outline
- Towards representative and reliable training corpora in several languages
- The training corpus as a statistical reader model
- QNA and machine learning tools for extracting and determining the importance of text features
- Well selected, ecologically valid literary test materials and reliable open-access reader-response data banks
- Illustrative studies merging (neuro-)cognitive poetics and computational stylistics
- Study 1. Lexical distinctiveness
- Study 2. Lexical diversity and concreteness
- Study 3. Sentiment analysis and lexical aesthetic potential
- Study 4. Affective sublexical indices: Tender vs. aggressive consonants and sonority score
- Study 5. Interlexical indices: Bigram novelty, tenor vehicle similarity, and arousal span
- Study 6. Supralexical indices (lines, sentences, stanzas, poem)
- Lines
- Sentences
- Stanza dynamics
- Topics
- Discussion and outlook
- Notes
-
References
Published online: 17 January 2019
https://doi.org/10.1075/ssol.18002.jac
https://doi.org/10.1075/ssol.18002.jac
References
Abramo, F., Gambino, R., Pulvirenti, G., Xue, S., Sylvester, T., Mangen, A., Papp-Zipernovszky, O., Lüdtke, J. & Jacobs, A. M.
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
Andrzejewski, D., Zhu, X., & Craven, M.
Armeni, K., Willems, R. M., & Frank, S. L.
Aryani, A., Jacobs, A. M., & Conrad, M.
Aryani, A., Kraxenberger, M., Ullrich, S., Jacobs, A. M., & Conrad, M.
Bambini, V., Canal, P., Resta, D., & Grimaldi, M.
Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E.
Bestgen, Y., & Vincze, N.
Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M.
Bornet, C., & Kaplan, F.
Braun, M., Jacobs, A. M., Hahne, A., Ricker, B., Hofmann, M., & Hutzler, F.
Bradley, M. M., & Lang, P. J.
Braun, M., Hutzler, F., Ziegler, J. C., Dambacher, M., & Jacobs, A. M.
Braun, M., Hutzler, F., Munte, T. F., Rotte, M., Dambacher, M., Richlan, F., & Jacobs, A. M.
Breen, M.
Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M.
Brunswik, E.
Burke, M.
Burrows, J. F.
Burrows, J.
Busemann, A.
Castiglione, D.
Citron, F. M. M., Weekes, B. S., & Ferstl, E. C.
Crossley, S. A., Kyle, K., & McNamara, D. S.
Dalvean, M.
Davies, M.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.
Delmonte, R.
De Smedt, T., & Daelemans, W.
Eder, M.
Eder, M., Rybicki, J., & Kestemont, M.
Epstein, R.
Forsyth, R. S.
Forsyth, R. S., & Holmes, D. I.
Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z.
Hanauer, D.
Henrich, V., Hinrichs, E., & Suttner, K.
Herrmann, J. B., van Dalen-Oskam, K., & Schöch, C.
Hoffstaedter, P.
Hofmann, M. J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, A. M.
Hofmann, M. J., & Jacobs, A. M.
Hollis, G., Westbury, C., & Lefsrud, L.
Hoorn, J., Frank, S., Kowalczyk, W., & van der Ham, F.
Hoover, D. L.
Hoshi, H., & Menninghaus, W.
Hsu, C. T., Jacobs, A. M., Citron, F., & Conrad, M.
Hutto, C. J., & Gilbert, E. E.
Jacobs, A. M.
Jacobs, A.
Jacobs, A. M.
Jacobs, A. M., & Kinder, A.
Jacobs, A. M., & Lüdtke, J.
Jacobs, A. M., & Willems, R. M.
Jacobs, A. M., Võ, M. L. H., Briesemeister, B. B., Conrad, M., Hofmann, M. J., Kuchinke, L., Lüdtke, J., & Braun, M.
Jacobs, A. M., Hofmann, M. J., & Kinder, A.
Jacobs, A. M., Lüdtke, J., Aryani, A., Meyer-Sickendiek, B., & Conrad, M.
Jacobs, A. M., Schuster, S., Xue, S., & Lüdtke, J.
Jannidis, F., & Lauer, G.
Jurafsky, D., & Martin, J. H.
Kao, J., & Jurafsky, D.
(2012) A computational analysis of style, affect, and imagery in contemporary poetry. NAACL Workshop on Computational Linguistics for Literature. http://www.stanford.edu/jurafsky/kaojurafsky12.pdf
Kaplan, D., & Blei, D.
Katz, A. N., Paivio, A., & Marschark, M.
Katz, A., Paivio, A., Marschark, M., & Clark, J.
Keats, J.
Keidel, J. L., Davis, P. M., Gonzalez-Diaz, V., Martin, C. D., & Thierry, G.
Kintsch, W.
Kintsch, W., & van Dijk, T. A.
Kraxenberger, M.
Kraxenberger, M., & Menninghaus, W.
Kucera, H., & Francis, W. N.
Kutas, M.
Larsen, S. E., & Seilman, U.
Lea, R. B., Rapp, D. N., Elfenbein, A., Mitchel, A. D., & Romine, R. S.
Lehne, M., Engel, P., Menninghaus, W., Jacobs, A. M., & Koelsch, S.
Louwerse, M. M.
Lüdtke, J., Meyer-Sickendiek, B., & Jacobs, A. M.
Mandera, P., Keuleers, E., & Brysbaert, M.
Marschark, M., Katz, A. N., & Paivio, A.
Menninghaus, W., Bohrn, I. C., Altmann, U., Lubrich, O., & Jacobs, A. M.
Miall, D. S.
Miall, D. S., & Kuiken, D.
Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, … Lieberman Aiden, E.
Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013) Efficient estimation of word representations in vector space. Retrieved from https://arxiv.org/abs/1301.3781
Miller, G. A.
Neuhäuser, R.
O’Sullivan, N., Davis, P., Billington, J., Gonzalez-Diaz, V., & Corcoran, R.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V.
Pennebaker, J. W., & Francis, M. E.
Petrie, K. J., Pennebaker, J. W., & Sivertsen, B.
Recchia, G., & Louwerse, M. M.
Rehuřek, R., & Sojka, P.
Riegel, M., Wierzba, M., Wypych, M., Zurawski, L., Jednorog, K., Grabowska, A., & Marchewka, A.
Salgaro, M.
Schmidtke, D. S., Schröder, T., Jacobs, A. M., & Conrad, M.
Schmidtke, D. S., Conrad, M., & Jacobs, A. M.
Schrott, R., & Jacobs, A. M.
Shen, Y.
Simonton, D. K.
Steen, G.
Steyvers, M., Smyth, P., & Chemuduganta, C.
Strobl, C., Malley, J., & Tutz, G.
Stockwell, P.
Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M.
Tsur, R.
Turner, F., & Poeppel, E.
Turney, P. D., & Littman, M. L.
Ullrich, S., Aryani, A., Kraxenberger, M., Jacobs, A. M., & Conrad, M.
van den Hoven, E., Hartung, F., Burke, M., & Willems, R. M.
van Peer, W., Hakemulder, J., & Zyngier, S.
Võ, M. L. H., Jacobs, A. M., & Conrad, M.
Võ, M. L. H., Conrad, M., Kuchinke, L., Hartfeld, K., Hofmann, M. J., & Jacobs, A. M.
Warriner, A. B., Kuperman, V., & Brysbaert, M.
Westbury, C., Keith, J., Briesemeister, B. B., Hofmann, M. J., & Jacobs, A. M.
Whissell, C.
Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A.
Wu, Z., & Palmer, M.
Xue, X., Giordano, D., Lüdtke, J., Gambino, R., Pulvirenti, G., Spampinato, C., & Jacobs, A. M.
(2017) Weary with toil, I haste me to my bed: Eye tracking Shakespeare sonnets. Talk given at the 19th European Conference on Eye Movements, Wuppertal, Germany, 2017.
Yaron, I.
Cited by
Cited by 7 other publications
Jacobs, Arthur M.
Jacobs, Arthur M., Berenike Herrmann, Gerhard Lauer, Jana Lüdtke & Sascha Schroeder
Jacobs, Arthur M. & Annette Kinder
Jacobs, Arthur M. & Annette Kinder
Papp-Zipernovszky, Orsolya, Anne Mangen, Arthur Jacobs & Jana Lüdtke
Usée, Franziska, Arthur M. Jacobs & Jana Lüdtke
Xue, Shuwei, Arthur M. Jacobs & Jana Lüdtke
This list is based on CrossRef data as of 23 april 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.