Article published in:
Terminology
Vol. 28:1 (2022) ► pp. 157189
References
Agić, Željko, and Ivan Vulić
2019 ‘JW300: A Wide-Coverage Parallel Corpus for Low-Resource Languages’. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3204–10. Florence, Italy: Association for Computational Linguistics. CrossrefGoogle Scholar
Akbik, Alan, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf
2019 ‘FLAIR: An Easy-to-Use Framework for State-of-the-Art NLP’. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, 54–59. Minneapolis, USA: Association for Computational Linguistics.Google Scholar
Akbik, Alan, Duncan Blythe, and Roland Vollgraf
2018 ‘Contextual String Embeddings for Sequence Labeling’. In Proceedings of the 27th International Conference on Computational Linguistics, 1638–49. Sante Fe, New Mexico, USA: Association for Computational Linguistics.Google Scholar
Alami Merrouni, Zakariae, Bouchra Frikh, and Brahim Ouhbi
2020 ‘Automatic Keyphrase Extraction: A Survey and Trends’. Journal of Intelligent Information Systems 54 (2): 391–424. CrossrefGoogle Scholar
Amjadian, Ehsan, Diana Inkpen, T. Sima Paribakht, and Farahnaz Faez
2016 ‘Local-Global Vectors to Improve Unigram Terminology Extraction’. In Proceedings of the 5th International Workshop on Computational Terminology, 2–11. Osaka, Japan.Google Scholar
Amjadian, Ehsan, Diana Zaiu Inkpen, T. Sima Paribakht, and Farahnaz Faez
2018 ‘Distributed Specificity for Automatic Terminology Extraction’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 24 (1): 23–40. CrossrefGoogle Scholar
Astrakhantsev, Nikita, D. Fedorenko, and D. Yu. Turdakov
2015 ‘Methods for Automatic Term Recognition in Domain-Specific Text Collections: A Survey’. Programming and Computer Software 41 (6): 336–49. CrossrefGoogle Scholar
Bay, Matthias, Daniel Bruneß, Miriam Herold, Christian Schulze, Michael Guckert, and Mirjam Minor
2020 ‘Term Extraction from Medical Documents Using Word Embeddings’. In Proceedings of the 4th IEEE Conference on Machine Learning and Natural Language Processing (MNLP). Agadir, Morocco: IEEE Computer Society. CrossrefGoogle Scholar
Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov
2016 ‘Enriching Word Vectors with Subword Information’. ArXiv Preprint in ArXiv:1607.04606 [Cs]. http://​arxiv​.org​/abs​/1607​.04606
Bourigault, Didier
1992 ‘Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases’. In Proceedings of the 14th Conference on Computational Linguistics-Volume 3, 977–81. Nantes, France: Association for Computational Linguistics. CrossrefGoogle Scholar
1993 ‘An Endogeneous Corpus-Based Method for Structural Noun Phrase Disambiguation’. In Proceedings of the Sixth Conference of the European Chapter of the Association for Computational Linguistics, 81–86. Utrecht, Netherlands: Association for Computational Linguistics. CrossrefGoogle Scholar
Cram, Damien, and Beatrice Daille
2016 ‘TermSuite: Terminology Extraction with Term Variant Detection’. In Proceedings of The 54th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 13–18. Berlin, Germany: Association for Computational Linguistics. CrossrefGoogle Scholar
Crammer, Koby, Alex Kulesza, and Mark Dredze
2009 ‘Adaptive Regularization of Weight Vectors’. Advances in Neural Information Processing Systems 221: 414–22. CrossrefGoogle Scholar
Davies, Mark
2017 ‘The New 4.3 Billion Word NOW Corpus, with 4--5 Million Words of Data Added Every Day’. In Proceedings of the 9th International Corpus Linguistics Conference. Birmingham. Birmingham, UK. https://​www​.english​-corpora​.org​/now
De Clercq, Orphée, Marjan Van de Kauter, Els Lefever, and Veronique Hoste
2015 ‘LT3: Applying Hybrid Terminology Extraction to Aspect-Based Sentiment Analysis’. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 719–24. Denver, Colorado: Association for Computational Linguistics. CrossrefGoogle Scholar
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
2019 ‘BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding’. ArXiv:1810.04805 [Cs]. http://​arxiv​.org​/abs​/1810​.04805
Dobrov, Boris, and Natalia Loukachevitch
2011 ‘Multiple Evidence for Term Extraction in Broad Domains’. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, 710–15. Hissar, Bulgaria: Association for Computational Linguistics.Google Scholar
Drouin, Patrick
2003 ‘Term Extraction Using Non-Technical Corpora as a Point of Leverage’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 9 (1): 99–115. CrossrefGoogle Scholar
Drouin, Patrick, Jean-Benoît Morel, and Marie-Claude L’ Homme
2020 ‘Automatic Term Extraction from Newspaper Corpora: Making the Most of Specificity and Common Features’. In Proceedings of the 6th International Workshop on Computational Terminology (COMPUTERM 2020), 1–7. Marseille, France: ELRA.Google Scholar
Fedorenko, Denis, Nikita Astrakhantsev, and Denis Turdakov
2013 ‘Automatic Recognition of Domain-Specific Terms: An Experimental Evaluation’. In Proceedings of the Ninth Spring Researcher’s Colloquium on Database and Information Systems, 261:15–23. Kazan, Russia.Google Scholar
Goyal, Archana, Vishal Gupta, and Manish Kumar
2018 ‘Recent Named Entity Recognition and Classification Techniques: A Systematic Review’. Computer Science Review 291 (August): 21–43. CrossrefGoogle Scholar
Graff, David, Ângelo Mendonça, and Denise DiPersio
2011 ‘French Gigaword Third Edition LDC2011T10’. Philadelphia, USA: Linguistic Data Consortium.Google Scholar
Habibi, Maryam, Leon Weber, Mariana Neves, David Luis Wiegandt, and Ulf Leser
2017 ‘Deep Learning with Word Embeddings Improves Biomedical Named Entity Recognition’. Bioinformatics 33 (14): i37–48. CrossrefGoogle Scholar
Hätty, Anna, Michael Dorna, and Sabine Schulte im Walde
2017 ‘Evaluating the Reliability and Interaction of Recursively Used Feature Classes for Terminology Extraction’. In Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics, 113–21. Valencia, Spain: Association for Computational Linguistics. CrossrefGoogle Scholar
Hätty, Anna, Dominik Schlechtweg, and Michael Dorna
2020 ‘Predicting Degrees of Technicality in Automatic Terminology Extraction’. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 72883–89. olnine: Association for Computational Linguistics. CrossrefGoogle Scholar
Hazem, Amir, Mérieme Bouhandi, Florian Boudin, and Béatrice Daille
2020 ‘TermEval 2020: TALN-LS2N System for Automatic Term Extraction’. In Proceedings of the 6th International Workshop on Computational Terminology (COMPUTERM 2020), 95–100. Marseille, France: European Language Resources Association.Google Scholar
Kageura, Kyo, and Elizabeth Marshman
2019 ‘Terminology Extraction and Management’. In The Routledge Handbook of Translation and Technology, edited by O’Hagan, Minako. CrossrefGoogle Scholar
Kageura, Kyo, and Bin Umino
1996 ‘Methods of Automatic Term Recognition’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 3 (2): 259–89. CrossrefGoogle Scholar
Kauter, Marian van de, Geert Coorman, Els Lefever, Bart Desmet, Lieve Macken, and Véronique Hoste
2013 ‘LeTs Preprocess: The Multilingual LT3 Linguistic Preprocessing Toolkit’. Computational Linguistics in the Netherlands Journal 31: 103–20.Google Scholar
Kim, J.-D., T. Ohta, Y. Tateisi, and J. Tsujii
2003 ‘GENIA Corpus – a Semantically Annotated Corpus for Bio-Textmining’. Bioinformatics 19 (1): 180–82. CrossrefGoogle Scholar
Kingma, Diederik P., and Jimmy Ba
2015 ‘Adam: A Method for Stochastic Optimization’. In Proceedings of 3rd International Conference for Learning Representations. San Diego, CA. http://​arxiv​.org​/abs​/1412​.6980
Koutropoulou, Theoni, and Efstratios Efstratios
2019 ‘TMG-BoBI: Generating Back-of-the-Book Indexes with the Text-to-Matrix-Generator’. In Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications, IISA 2019, 1–8. Patras, Greece. CrossrefGoogle Scholar
Kucza, Maren, Jan Niehues, Thomas Zenkel, Alex Waibel, and Sebastian Stüker
2018 ‘Term Extraction via Neural Sequence Labeling a Comparative Evaluation of Strategies Using Recurrent Neural Networks’. In Proceedings of Interspeech 2018, the 19th Annual Conference of the International Speech Communication Association, 2072–76. Hyderabad, India: International Speech Communication Association. CrossrefGoogle Scholar
Loshchilov, Ilya, and Frank Hutter
2019 ‘Decoupled Weight Decay Regularization’. In Proceedings of the Seventh International Conference on Learning Representations. New Orleans, USA. http://​arxiv​.org​/abs​/1711​.05101
Macken, Lieve, Els Lefever, and Véronique Hoste
2013 ‘TExSIS: Bilingual Terminology Extraction from Parallel Corpora Using Chunk-Based Alignment’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 19 (1): 1–30. CrossrefGoogle Scholar
Martin, Louis, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djamé Seddah, and Benoît Sagot
2020 ‘CamemBERT: A Tasty French Language Model’. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 7203–19. Online: Association for Computational Linguistics. CrossrefGoogle Scholar
McCrae, John P., and Adrian Doyle
2019 ‘Adapting Term Recognition to an Under-Resourced Language: The Case of Irish’. In Proceedings of the Celtic Language Technology Workshop, 48–57. Dublin, Ireland.Google Scholar
Meyers, Adam L., Yifan He, Zachary Glass, John Ortega, Shasha Liao, Angus Grieve-Smith, Ralph Grishman, and Olga Babko-Malaya
2018 ‘The Termolator: Terminology Recognition Based on Chunking, Statistical and Search-Based Scores’. Frontiers in Research Metrics and Analytics 31 (June). CrossrefGoogle Scholar
Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig
2013 ‘Linguistic Regularities in Continuous Space Word Representations’. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 746–51. Atlanta, GA, USA: Association for Computational Linguistics.Google Scholar
Okazaki, Naoaki
2007CRFsuite: A Fast Implementation of Conditional Random Fields (CRFs). http://​www​.chokkan​.org​/software​/crfsuite/
Oostdijk, Nelleke, Martin Reynaert, Véronique Hoste, and Ineke Schuurman
2013 ‘The Construction of a 500-Million-Word Reference Corpus of Contemporary Written Dutch’. In Essential Speech and Language Technology for Dutch, edited by Peter Spyns and Jan Odijk, 219–47. Berlin, Heidelberg: Springer Berlin Heidelberg. CrossrefGoogle Scholar
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al.
2019 ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 8024–35. Vancouver, Canada. http://​arxiv​.org​/abs​/1912​.01703
Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al.
2011 ‘Scikit-Learn: Machine Learning in Python’. Machine Learning in Python, no. 12: 2825–30.Google Scholar
Peters, Matthew, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer
2018 ‘Deep Contextualized Word Representations’. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–37. New Orleans, Louisiana: Association for Computational Linguistics. CrossrefGoogle Scholar
Petrov, Slav, Dipanjan Das, and Ryan McDonald
2012 ‘A Universal Part-of-Speech Tagset’. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), 2089–96. Istanbul, Turkey: European Language Resources Association.Google Scholar
Pires, Telmo, Eva Schlinger, and Dan Garrette
2019 ‘How Multilingual Is Multilingual BERT?’ In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4996–5001. Florence, Italy: Association for Computational Linguistics. CrossrefGoogle Scholar
Qasemizadeh, Behrang, and Siegfried Handschuh
2014 ‘The ACL RD-TEC: A Dataset for Benchmarking Terminology Extraction and Classification in Computational Linguistics’. In Proceedings of COLING 2014: 4th International Workshop on Computational Terminology, 52–63. Dublin, Ireland.Google Scholar
Qasemizadeh, Behrang, and Anne-Kathrin Schumann
2016 ‘The ACL RD-TEC 2.0: A Language Resource for Evaluating Term Extraction and Entity Recognition Methods’. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 1862–68. Portorož, Slovenia: European Language Resources Association.Google Scholar
Rigouts Terryn, Ayla, Patrick Drouin, Véronique Hoste, and Els Lefever
2019 ‘Analysing the Impact of Supervised Machine Learning on Automatic Term Extraction: HAMLET vs TermoStat’. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), 1012–21. Varna, Bulgaria. CrossrefGoogle Scholar
Rigouts Terryn, Ayla, Véronique Hoste, Patrick Drouin, and Els Lefever
2020 ‘TermEval 2020: Shared Task on Automatic Term Extraction Using the Annotated Corpora for Term Extraction Research (ACTER) Dataset’. In Proceedings of the 6th International Workshop on Computational Terminology (COMPUTERM 2020), 85–94. Marseille, France: European Language Resources Association.Google Scholar
Rigouts Terryn, Ayla, Véronique Hoste, and Els Lefever
2020 ‘In No Uncertain Terms: A Dataset for Monolingual and Multilingual Automatic Term Extraction from Comparable Corpora’. Language Resources and Evaluation 54 (2): 385–418. CrossrefGoogle Scholar
2021 ‘HAMLET: Hybrid Adaptable Machine Learning Approach to Extract Terminology’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 27 (2). CrossrefGoogle Scholar
Rokas, Aivaras, Sigita Rackevičienė, and Andrius Utka
2020 ‘Automatic Extraction of Lithuanian Cybersecurity Terms Using Deep Learning Approaches’. In Proceedings of the Ninth International Conference on Baltic Human Language Technologies, 39–46. Kaunas, Lithuania: IOS Press. CrossrefGoogle Scholar
Stenetorp, Pontus, Goran Topić, Sampo Pyysalo, Tomoko Ohta, Jin-Dong Kim, and Jun’ichi Tsujii
2011 ‘BioNLP Shared Task 2011: Supporting Resources’. In Proceedings of BioNLP Shared Task 2011 Workshop, 112–20. Portland, oregon: Association for Computational Linguistics.Google Scholar
Vintar, Spela
2010 ‘Bilingual Term Recognition Revisited’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 16 (2): 141–58. CrossrefGoogle Scholar
Vivaldi, Jorge, and Horacio Rodríguez
2001 ‘Improving Term Extraction by Combining Different Techniques’. Terminology. International Journal of Theoretical and Applied Issues in Specialized Communication 7 (1): 31–48. CrossrefGoogle Scholar
Vries, Wietse de, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord, and Malvina Nissim
2019 ‘BERTje: A Dutch BERT Model’. ArXiv:1912.09582, December. http://​arxiv​.org​/abs​/1912​.09582
Wang, Rui, Wei Liu, and Chris McDonald
2016 ‘Featureless Domain-Specific Term Extraction with Minimal Labelled Data’. In Proceedings of Australasian Language Technology Association Workshop, 103–12. Melbourne, Australia.Google Scholar
Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, et al.
2020 ‘Transformers: State-of-the-Art Natural Language Processing’. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45. Online: Association for Computational Linguistics. CrossrefGoogle Scholar
Wołk, Krzysztof, and Krzysztof Marasek
2014 ‘Building Subject-Aligned Comparable Corpora and Mining It for Truly Parallel Sentence Pairs’. Procedia Technology 181: 126–32. CrossrefGoogle Scholar
Yuan, Yu, Jie Gao, and Yue Zhang
2017 ‘Supervised Learning for Robust Term Extraction’. In The Proceedings of 2017 International Conference on Asian Language Processing (IALP), 302–5. Singapore: IEEE. CrossrefGoogle Scholar
Zhang, Ziqi, Johann Petrak, and Diana Maynard
2018 ‘Adapted TextRank for Term Extraction: A Generic Method of Improving Automatic Term Extraction Algorithms’. ACM Transactions on Knowledge Discovery from Data 12 (5): 1–7. CrossrefGoogle Scholar