Part of
Developmental Perspectives in Written Language and Literacy: In honor of Ludo Verhoeven
Edited by Eliane Segers and Paul van den Broek
[Not in series 206] 2017
► pp. 2949
References
Beaulieu, C., Plewes, C., Paulson, L. A., Roy, D., Snook L., Concha, L., & Philips, L
(2005) Imaging brain connectivity in children with diverse reading ability. Neuroimage, 25, 1266–1271. DOI logoGoogle Scholar
Berninger, V. W., & Winn, W. D
(2006) Implications of advancements in brain research and technology for writing development, writing instruction, and educational evolution. In C. MacArthur, S. Graham, & J. Fitzgerald (Eds.), The writing handbook (pp. 96–114). New York: The Guilford Press.Google Scholar
Bitan, T., Booth, J. R., Choy, J., Burman, D. D., Gitelman, D. R., & Mesulam, M. M
(2005) Shifts of effective connectivity within a language network during rhyming and spelling. The Journal of Neuroscience, 25(22), 5403–5397. DOI logoGoogle Scholar
Booth, J. R., Burman, D. D., Van Santen, F. W., Harasaki, Y., Gitelman, D. R., Parrish, T. B., & Marsel Mesulam, M. M
(2001) The development of specialized brain systems in reading and oral-language. Child Neuropsychology, 7, 119–141. DOI logoGoogle Scholar
Brambati, S. M., Termine, C., Ruffino, M., Stella, G., Fazio, F., Cappa, S. F., & Perani, D
(2004) Regional reductions of gray matter volume in familial dyslexia. Neurology, 63, 742–745. DOI logoGoogle Scholar
Brown, W. E., Eliez, S., Menon, V., Rumsey, J. M., White, C. D., & Reiss, A. L
(2001) Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56, 781–783. DOI logoGoogle Scholar
Brunswick, N., McCrory, E., Price, C., Frith, C. D., & Frith, U
(1999) Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for Wernicke’s Wortschatz. Brain, 122, 1901–1917. DOI logoGoogle Scholar
Bruno, J. L., Lu, Z.-L. & Manis, F
(2013) Phonological processing is uniquely associated with neuro-metabolic concentration. NeuroImage, 67, 175–181. DOI logoGoogle Scholar
Caplan, D
(2004) Functional neuroimaging studies of written sentence comprehension. Scientific Studies of Reading, 8(3), 225–240. DOI logoGoogle Scholar
Caravolas, M., Lervåg, A., Defior, S., Málková, G. S., & Hulme, C
(2013) Different patterns, but equivalent predictors, of growth in reading in consistent and inconsistent orthographies. Psychological Science, 24(8), 1398–1407. DOI logoGoogle Scholar
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M
(1998) The illiterate brain – Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 1053–1063. DOI logoGoogle Scholar
Chee, M., Tan, E., & Thiel, T
(1999) Mandarin and English single word processing studied with functional magnetic resonance imaging. Journal of Neuroscience, 19, 3050–3056.Google Scholar
Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L
(2008) A developmental fMRI study of reading reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18, 2054–2065. DOI logoGoogle Scholar
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S
(2002) Language- specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125, 1054–1069. DOI logoGoogle Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M-A., & Michel, F
(2000) The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123, 291–307. DOI logoGoogle Scholar
Constable, R. T., Pugh, K. R., Berroya, E., Mencl, W. E., Westerveld, M., Ni, W., & Shankweiler, D
(2004) Sentence complexity and input modality effects in sentence comprehension: An fMRI Study. NeuroImage, 22, 11–21. DOI logoGoogle Scholar
Cooke, A., Grossman, M., DeVita, C., Gonzalez-Atavales, J., Moore, P., Chen, W., Gee, J., & Detre, J
(2006) Large scale network for sentence processing. Brain and Language, 96, 14–36. DOI logoGoogle Scholar
Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., Aso, T., Urayama, S., Fukuyama, H., Stockton, K., Usui, K., Green, D. W., & Price, C. J
(2006) Language control in the bilingual brain. Science, 312, 1537–1540. DOI logoGoogle Scholar
Damasio, A. R., & Damasio, H
(1983) The anatomic basis of pure alexia. American Academy of Neurology, 33, 1573–1583. DOI logoGoogle Scholar
Das, T., Padakannaya, P., Pugh, K.R., Singh, N.C
(2011) Neuroimaging reveals dual routes to reading simultaneous proficient readers of two orthographies. NeuroImage, 54, 1476–1487. DOI logoGoogle Scholar
Dejerine, J
(1891) Sur un cas de cécité verbale avec agraphie, suivi d’autopsie. Comptes Rendus Hebdomadaires des Séances et Mémoires de la Société de Biologie, 4, 61–90.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L
(2010) How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359–1364. DOI logoGoogle Scholar
Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D., & Wandell, B. A
(2005) Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41(3), 354–363. DOI logoGoogle Scholar
Dougherty, R. F., Ben-Shachar, M., Deutsch, G. K., Hernandez, A., Fox, G. R., & Wandell, B. A
(2007) Temporal-callosal pathway diffusivity predicts phonological skills in children. Proceedings of the National Academy of Sciences, 104, 8556–8561. DOI logoGoogle Scholar
Eckert, M. A., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W
(2003) Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain 126, 482–494. DOI logoGoogle Scholar
Evans, G. W., & Schamberg, M. A
(2009) Childhood poverty, chronic stress, and adult working memory. Proceedings of the National Academy of Science, 106(16), 6545–6549. DOI logoGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y
(2008) The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29, 581–593. DOI logoGoogle Scholar
Fiebach, C. J., Friederici, A. D., Müller, K., von Cramon, D. Y., & Hernandez, A. E
(2003) Distinct brain representations for early and late learned words. Neuroimage, 19, 627–637. DOI logoGoogle Scholar
Frost, S. J. et al.
(2009) Phonological awareness predicts activation patterns for print and speech. Annals of Dyslexia, 59, 78–97. DOI logoGoogle Scholar
Galaburda, A., LoTurco, J., Ramus, F., Fitch, R., & Rosen, G
(2006) From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213–1217. DOI logoGoogle Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N
(1985) Developmental dyslezia: Four consecutive patients with cortical anomalies. Annals of Enurology, 18(2), 222–233. DOI logoGoogle Scholar
Geschwind, N
(1965) Disconnection syndromes in animals and man. Brain, 88, 237–294. DOI logoGoogle Scholar
Grigorenko, E. L
(2009) At the height of fashion: What genetics can teach us about neurodevelopmental disabilities. Current Opinion in Neurology, 22, 126–130. DOI logoGoogle Scholar
Hackman, D. A., & Farah, M. J
(2009) Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13(2), 65–73. DOI logoGoogle Scholar
Gimenez, P., Bugescu, N., Black, J. M., Hancock, R., Pugh, K. R., Nagamine, M., Kutner, E., Mazaika, P., Hendren, R., McCandliss, B, & Hoeft, F
(2014) The writing brain: Neuroimaging associations with handwriting skills as children learn to read and write. Frontiers in Human Neuroscience, 5(155), 2. DOI logo. Google Scholar
Hampson, M., Tokoglu, F., Sun, Z., Schafer, R. J., Skudlarski, P., Gore, J. C., & Constable, R. T
(2006) Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. NeuroImage, 31, 513–519. DOI logoGoogle Scholar
Harm, M. W., & Seidenberg, M. S
(2004) Computing the meanings of words in reading: Cooperative division of labor between visual and phonological processes. Psychological Review, 111(3), 662–720. DOI logoGoogle Scholar
Hornickel, J., & Kraus, N
(2013) Unstable representation of sound: A biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500–3504. DOI logoGoogle Scholar
Horwitz, B., Rumsey, J. M., & Donohume, B. C
(1998) Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National academy of Sciences, 95, 8939–8944. DOI logoGoogle Scholar
Indefrey, P., & Levelt, W. J
(2004) The spatial and temporal signatures of word production components. Cognition, 92, 101–144. DOI logoGoogle Scholar
James, K. H., & Gauthier, I
(2006) Letter processing automatically recruits a sensory–motor brain network. Neuropsychologia, 44, 2937–2949. DOI logoGoogle Scholar
Katanoda, K., Yoshikawa, K., & Sugishita, M
(2001) A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13, 34–42. DOI logoGoogle Scholar
Keller, T. A., & Just, M. A
(2009) Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64(5), 624–631. DOI logoGoogle Scholar
Kim, K. H. S., Relkin, N. R., Lee, K.-M., & Hirsch, J
(1997) Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171–174. DOI logoGoogle Scholar
Kindler, A. L
(2002) Survey of the states’ limited English proficient students and available educational programs and services: 2000–2001 summary report. Washington, DC: National Clearinghouse for English Language Acquisition.Google Scholar
Klein, D., Milner, B., Zatorre, R., Zhoa, V., & Nikelski, J
(1999) Cerebral organization in bilinguals: a PET study of Chinese-English verb generation. Neuroreport, 10, 2841–2846. DOI logoGoogle Scholar
Klein, D., Zatorre, R. J., Chen, J. K., Milner, B., Crane, J., Belin, P., & Bouffard, M
(2006) Bilingual brain organization: A functional magnetic resonance adaptation study. Neuroimage, 31, 366–375. DOI logoGoogle Scholar
Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E., & Poldrack, R. A
(2000) Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25, 493–500. DOI logoGoogle Scholar
Kroll, J. F., & Linck, J. A
(2007) Representation and skill in second language learners and proficient bilinguals. In I. Kecskes & L. Albertazzi (Eds.), Cognitive aspects of bilingualism (pp. 237–269). New York: Springer. DOI logoGoogle Scholar
Kronbichler, M., Wimmer, H., Staffen, W., Hutzler, F., Mair, A., & Gunther, L
(2008) Developmental dyslexia: Gray matter abnormalities in occipitotemporal cortex. Human Brain Mapping, 29, 613–625. DOI logoGoogle Scholar
Kuperberg, G. R., Sitnikova, T., & Lakshmanan, B. M
(2008) Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging. Neuroimage, 40, 367–388. DOI logoGoogle Scholar
Liu, Y., Dunlap, S., Fiez, J., & Perfetti, C. A
(2007) Evidence for neural accommodation to a writing system following learning. Human Brain Mapping, 28, 1223–1234. DOI logoGoogle Scholar
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A
(2003) A definition of dyslexia. Annals of Dyslexia, 53(1), 1–14. DOI logoGoogle Scholar
Marian, V., Spivey, M., & Hirsch, J
(2003) Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain and Language, 86, 70–82. DOI logoGoogle Scholar
Menon, V., & Desmond, J. E
(2001) Left superior parietal cortex involvement in writing: Integrating fMRI with lesion evidence. Cognitive Brain Research, 12, 337–340. DOI logoGoogle Scholar
McNorgan, C., Randazzo-Wagner, M., & Booth, J. R
(2013) Cross-modal integration in the brain is related to phonological awareness only in typical readers, not in those with reading difficulty.Frontiers in Human Neuroscience, 7, 388 . DOI logo
Meschyan, G., & Hernandez, A. E
(2006) Impact of language proficiency and orthographic transparency on bilingual word reading: An fMRI investigation. NeuroImage, 29, 1135–1140. DOI logoGoogle Scholar
Meyler, A., Keller, T. A., Cherkassy, V. L., Gabrieli, J. E. D., & Just, M. A
(2008) Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46, 2580–2592. DOI logoGoogle Scholar
Michael, E. B., Keller, T. A., Carpenter, P. A., & Just, M. A
(2001) An fMRI investigation of sentence comprehension by eye and by ear: Modality fingerprints on cognitive processes. Human Brain Mapping, 13, 239–252. DOI logoGoogle Scholar
Niogi, S. N., & McCandliss, B. D
(2006) Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia, 44, 2178–2188. DOI logoGoogle Scholar
Nobal, K. G., McCandliss, B. D., & Farah, M. J
(2007) Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10(4), 464–480. DOI logoGoogle Scholar
Noble, K. G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D
(2006) Brain-behavior relationships in reading acquisition are modulated by socioeconomic factors. Developmental Science, 9(6), 642–654. DOI logoGoogle Scholar
Nosarti, C., Mechelli, A., Green, D. W., & Price, C. J
(2009) The impact of second language learning on semantic and nonsemantic first language reading. Cerebral Cortex, 20(2), 315–327. DOI logoGoogle Scholar
Paulesu, E., Demonet, J. F., Fazio, F., McCrory, E., & Chanine, V
(2001) Dyslexia: Cultural diversity and biological unity. Science, 291, 2064–2065. DOI logoGoogle Scholar
Perfetti, C. A., & Hart, L
(2001) The lexical basis of comprehension skill. In D. Gorfein (Ed.), On the consequences of meaning selection: Perspectives on resolving lexical ambiguity (pp. 67–86). Washington, DC: American Psychological Association. DOI logoGoogle Scholar
Perfetti, C. A., Liu, Y., Fiez, J., Nelson, J., Bolger, D. J., & Tan, L-H
(2007) Reading in two writing systems: Accommodation and assimilation of the brain’s reading network. Bilingualism: Language and Cognition, 10(2), 131–146. DOI logoGoogle Scholar
Planty, M., Hussar, W., Snyder, T., Kena, G., Kewal-Ramani, A., Kemp, J., Bianco, K., & Dinkes, R
(2009) The Condition of Education 2009 (NCES 2009-081). Washington, DC: National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education.Google Scholar
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D
(1999) Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10, 15–35. DOI logoGoogle Scholar
Pugh, K. R., Frost, S. J., Sandak, R., Landi, N., Moore, D., Della Porta, G., Reuckl, J. G., & Mencl, W. E
(2010) Mapping the word reading circuitry in skilled and disabled readers. In P. L. Cornelissen, P. C. Hansen, M. L. Kringelback, & K. Pugh (Eds.), The neural basis of reading. New York: Oxford University Press. DOI logoGoogle Scholar
Pugh, K. R., Frost, S. J., Sandak, R., Landi, N., Rueckl, J. G., Constable, R. T, Fulbright, R., Katz, L., & Mencl, W. E
(2008) Effects of stimulus difficulty and repetition on printed word identification: An fMRI comparison of Non-Impaired and Reading Disabled Adolescent cohorts. Journal of Cognitive Neuroscience, 207, 1146–1160. DOI logoGoogle Scholar
Pugh, K. R., Frost, S. J., Sandak, R., Gillis, M., Moore, D., Jenner, A. R., & Mencl, W. E
(2006) What does reading have to tell us about writing: Preliminary questions and methodological challenges in examining the neurobiological foundations of writing and writing disabilities. In C. MacArthur, S. Graham, & J. Fitzgerald (Eds.), Handbook of Writing Research. New York: Guilford.Google Scholar
Pugh, K., Mencl, W. E., Shaywitz, B. A., Shaywitz, S. E., Fulbright, R. K., Skudlarski, P., Constable, R. T., Marchione, K. E., Jenner, A.R, Shankweiler, D. P., Katz, L., Fletcher, J. M., Lacadie, C., & Gore, J. C
(2000) The angular gyrus in developmental dyslexia: Task-specific differences in functional connectivity in posterior cortex. Psychological Science, 11, 51–59. DOI logoGoogle Scholar
Pugh, K. R., Sandak, R., Frost, S. J., Moore, D., & Mencl, W. E
(2006) Examining reading development and reading disability in diverse languages and cultures: Potential contributions from functional neuroimaging. Journal of American Indian Education, 45(3), 60–76.Google Scholar
Pugh, K. R., Landi, N., Preston, J. L., Mencl, W. E., Austin, A., Sibley, D., Fulbright, R. K., Seidenberg, M. S., Grigorenko, E., Constable, R. T., Molfese, P., & Frost, S. J
(2013) The relationship between phonological and sensorimotor processing skills and the neurocircuitry for reading in emergent readers. Brain and Language, 125(2), 173–183. DOI logoGoogle Scholar
Pugh, K. R., Frost, S. J., Rothman, D. L., Hoeft, F., Del Tufo, S. N., Mason, G. F., Molfese, P. J., Mencl, W. E., Grigorenko, E. L., Landi, N., Preston, J. L., Jaconsen, L., Seidenberg, M. S., & Fulbright, R. K
(2014) Glutamate and choline levels predict individual differences in reading ability in emergent readers. Journal of Neuroscience, 34(11), 4082–4089. DOI logoGoogle Scholar
Preston, J. L., Molfese, P. J., Mencl, W. E., Frost, S. J., Hoeft, F., Fulbright, R. K., Landi, N., Grigorenko, E. L., Seki, A., Felsenfeld, S., & Pugh, K. R
(2014) Structural brain differences in school-age children with residual speech sound errors. Brain and Language, 128(1), 25–33. DOI logo.Google Scholar
Preston, J. L., Molfese, P. J., Frost, S. J., Mencl, W. E., Fulbright, R. K., Hoeft, F., Landi, N., Shankweiler, D., & Pugh, K. R
(2016) Print-speech convergence predicts future reading outcomes in early readers. Psychological Science, 27(1), 75–84. DOI logo.Google Scholar
Rueckl, J. G., Paz-Alonso, P. M., Molfese, P. J., Kuo, W. J., Bick, A., Frost, S. J., Hancock, R., Wu, D. H., Mencl, W. E., Duñabeitia, J. A., Oliver, M., Zevin, J. D., Hoeft, F., Carreiras, M., Tzeng, O. J. L., Pugh, K. R., & Lee, J. R
(2015) Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences, 112(50), 15510–15515. DOI logoGoogle Scholar
Richards, T., Berninger, V., & Fayol, M
(2009) fMRI activation differences between 11-year old good and poor spellers’ access in working memory to temporary and long-term orthographic representations. Journal of Neurolinguistics, 22(4), 327–353. DOI logoGoogle Scholar
Richlan, F., Kronbichler, M., & Wimmer, H
(2012) Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065. DOI logoGoogle Scholar
Rumsey, J. M., Nace, K., Donohue, B., Wise, D., Maisog, J. M., & Andreason, P. A
(1997) A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Archives of Neurology, 54, 562–573. DOI logoGoogle Scholar
Salmelin, R., Service, E., Kiesila, P., Uutela, K., & Salonen, O
(1996) Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40, 157–162. DOI logoGoogle Scholar
Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R
(2004) The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8(3), 273–292. DOI logoGoogle Scholar
Sarkari, S., Simos, P. G., Fletcher, J. M., Castillo, E. M., Breier, J. I., & Papanicolaou, A. C
(2002) Functional brain imaging. Seminars in Pediatric Neurology, 9, 227–236. DOI logoGoogle Scholar
Schlaggar, B. L., & McCandliss, B. D
(2007) Development of neural systems for reading. Annual Reviews of Neuroscience, 30, 475–503. DOI logoGoogle Scholar
Seghier, M. L., & Price, C. J
(2010) Reading aloud boosts connectivity through the putamen. Cerebral Cortex, 20(3), 570–582. DOI logoGoogle Scholar
Shankweiler, D., Mencl, W. E., Braze, D., Tabor, W., Pugh, K. R., & Fulbright, R
(2008) Reading differences and brain: Cortical integration of speech and print in sentence processing varies with reader skill. Developmental Neuropsychology, 33(6), 745–775. DOI logoGoogle Scholar
Shaywitz, B. A, Shaywitz, S. E, Blachman, B., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, E. M. Constable, R. T., Holahan, J., Marchione, K. E., Fletcher, J., Lyon, G. R., & Gore, J
(2004) Development of left occipito-termporal systems for skilled reading following a phonologically-based intervention in children. Biological Psychiatry, 55, 926–933. DOI logoGoogle Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P. Constable, R. T., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C
(2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101–110. DOI logoGoogle Scholar
Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., Shankweiler, D. P., Liberman, A. M., Skudlarski, P., Fletcher, J. M., Katz, L., Marchione, K. E., Lacadie, C., Gatenby, C., & Gore, J. C
(1998) Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy Sciences, 95, 2636–2641. DOI logoGoogle Scholar
Silani, G., Frith, U., Demonet, J. F., Fazio, F., Perani, D., Price, C., Frith, C. D., & Paulesu, E
(2005) Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128, 2453–2461. DOI logoGoogle Scholar
Simos, P. G., Breier, J. I., Fletcher, J. M., Foorman, B. R., Castillo, E. M., & Papanicolaou, A. C
(2002) Brain mechanisms for reading words and pseudowords: an integrated approach. Cerebral Cortex, 12, 297–305. DOI logoGoogle Scholar
Sperling, A. J., Lu, Z.-L., Manis, F. R., & Seidenberg, M. S
(2006) Motion-perception deficits and reading impairment: It’s the noise, not the motion. Psychological Science, 17(12), 1047–1053. DOI logoGoogle Scholar
Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J., Fox, P. T., & Gao, J. H
(2003) Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18, 155–166. DOI logoGoogle Scholar
Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., & Gabrieli, J. D. E
(2003) Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 100, 2860–2865. DOI logoGoogle Scholar
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F
(2003) Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773. DOI logoGoogle Scholar
Warrington, E. T., & Shallice, T
(1980) Word from dyslexia. Brain, 103, 99–112. DOI logoGoogle Scholar
Xue, G., Dong, Q., Jin, Z., Zhang, L., & Wang, Y
(2004) An fMRI study with semantic access in low proficiency second language learners. NeuroReport, 15, 791–796. DOI logoGoogle Scholar