Part of
Atypical Language Development in Romance Languages
Edited by Eva Aguilar-Mediavilla, Lucía Buil-Legaz, Raúl López-Penadés, Victor A. Sanchez-Azanza and Daniel Adrover-Roig
[Not in series 223] 2019
► pp. 7590
References (38)
References
Aylward, G. P. 2014. Neurodevelopmental outcomes of infants born prematurely. Journal of Developmental & Behavioral Pediatrics 35(6), 394–407. DOI logoGoogle Scholar
Bayley, N. 2006. Bayley scales of infant and toddler development: BSID-III. New York, NY: Harcourt Assessment, Psych. Corporation.Google Scholar
Berdasco-Muñoz, E., Nishibayashi, L. L., Baud, O., Biran, V., & Nazzi, T. 2018. Early segmentation abilities in preterm infants. Infancy 23(2), 268–287. DOI logoGoogle Scholar
Bergelson, E., & Aslin, R. N. 2017. Nature and origins of the lexicon in 6-mo-olds. Proceedings of the National Academy of Sciences 114(49), 12916–12921. DOI logoGoogle Scholar
Bergelson, E., , & Swingley, D. 2012. At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 3253–3258. DOI logoGoogle Scholar
Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. 2005. Mommy and me: Familiar names help launch babies into speech-stream segmentation. Psychological Science 16(4), 298–304. DOI logoGoogle Scholar
Bosch, L. 2011. Precursors to language in preterm infants: speech perception abilities in the first year of life. In O. Braddick, J. Atkinson, & G. Innocenti (Eds.), Gene expression to neurobiology and behavior: Human brain development and developmental disorders (Progress in Brain Research, Vol., 189) (Ch. 14, pp. 239–257). DOI logoGoogle Scholar
Bosch, L., & Sebastián-Gallés, N. 2001. Evidence of early language discrimination abilities in infants from bilingual environments. Infancy 2(1), 29–49. DOI logoGoogle Scholar
Bosch, L., Figueras, M., Teixidó, M., & Ramon-Casas, M. 2013. Rapid gains in segmenting fluent speech when words match the rhythmic unit: evidence from infants acquiring syllable-timed languages. Frontiers in Psychology, 4. DOI logoGoogle Scholar
Bosch, L., Solé, J., Teixidó, M., Arca, G., & Agut, T. 2013. Delayed ability to segment words from fluent speech in infants born preterm. Paper presented at the 16th European Conference on Developmental Psychology (ECDP, Lausanne, Switzerland).Google Scholar
Brent, M. R., & Siskind, J. M. 2001. The role of exposure to isolated words in early vocabulary development. Cognition 81(2), B33-B44. DOI logoGoogle Scholar
Caravale, B., Mirante, N., Vagnoni, C., & Vicari, S. 2012. Change in cognitive abilities over time during preschool age in low risk preterm children. Early Human Development 88(6), 363–367. DOI logoGoogle Scholar
Caravale, B., Tozzi, C., Albino, G., & Vicari, S. 2005. Cognitive development in low risk preterm infants at 3–4 years of life. Archives of Disease in Childhood-Fetal and Neonatal Edition 90(6), F474-F479. DOI logoGoogle Scholar
de Jong, M., Verhoeven, M., Lasham, C. A., Meijssen, C. B., & van Baar, A. L. 2015. Behaviour and development in 24-month-old moderately preterm toddlers. Archives of Disease in Childhood 100(6), 548–553. DOI logoGoogle Scholar
Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. 2007. Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science 18(3), 254–260. DOI logoGoogle Scholar
Gonzalez-Gomez, N., & Nazzi, T. 2012a. Phonotactic acquisition in healthy preterm infants. Developmental Science 15(6), 885–894. DOI logoGoogle Scholar
2012b. Acquisition of nonadjacent phonological dependencies in the native language during the first year of life. Infancy 17(5), 498–524. DOI logoGoogle Scholar
Gogate, L., Maganti, M., & Perenyi, A. 2014. Preterm and term infants' perception of temporally coordinated syllable–object pairings: Implications for lexical development. Journal of Speech, Language, and Hearing Research 57(1), 187–198. DOI logo)Google Scholar
Jansson-Verkasalo, E., Ruusuvirta, T., Huotilainen, M., Alku, P., Kushnerenko, E., Suominen, K., & Hallman, M. 2010. Atypical perceptual narrowing in prematurely born infants is associated with compromised language acquisition at 2 years of age. BMC neuroscience 11(1), 88. DOI logoGoogle Scholar
Johnson, E. K., & Jusczyk, P. W. 2001. Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language 44(4), 548–567. DOI logoGoogle Scholar
Johnson, E. K., Seidl, A., & Tyler, M. D. 2014. The edge factor in early word segmentation: utterance-level prosody enables word form extraction by 6-month-olds. PloS One 9(1), e83546: DOI logoGoogle Scholar
Jusczyk, P. W., & Aslin, R. N. 1995. Infants′ detection of the sound patterns of words in fluent speech. Cognitive Psychology 29(1), 1–23. DOI logoGoogle Scholar
Jusczyk, P. W., Houston, D. M., & Newsome, M. 1999. The beginnings of word segmentation in English-learning infants. Cognitive Psychology 39(3), 159–207. DOI logoGoogle Scholar
Männel, C., Teixidó, M. Bosch, L, Friederici, A., & Friedrich, M.2017. Sentence prosody cues object category learning by 6 months. Potser presented at the 9th meeting of the Society for the Neurobiology of Language (Baltimore, MD. 8–10 November 2017).Google Scholar
Mattys, S. L., White, L., & Melhorn, J. F. 2005. Integration of multiple speech segmentation cues: A hierarchical framework. Journal of Experimental Psychology: General 134(4), 477. DOI logoGoogle Scholar
Nazzi, T., Nishibayashi, L. L., Berdasco-Muñoz, E., Baud, O., Biran, V., & Gonzalez-Gomez, N. 2015. Language acquisition in preterm infants during the first year of life. Archives de Pediatrie: Organe Officiel de la Societe Francaise de Pediatrie 22(10), 1072–1077. DOI logoGoogle Scholar
Newman, R., Ratner, N. B., Jusczyk, A. M., Jusczyk, P. W., & Dow, K. A. 2006. Infants' early ability to segment the conversational speech signal predicts later language development: A retrospective analysis. Developmental Psychology 42(4), 643. DOI logoGoogle Scholar
Nishibayashi, L. L., Goyet, L., & Nazzi, T. 2015. Early speech segmentation in French-learning infants: Monosyllabic words versus embedded syllables. Language and Speech 58(3), 334–350. DOI logoGoogle Scholar
Pena, M., Werker, J. F., & Dehaene-Lambertz, G. 2012. Earlier speech exposure does not accelerate speech acquisition. Journal of Neuroscience 32(33), 11159–11163. DOI logoGoogle Scholar
Pérez-Pereira, M., Fernández, P., Gómez-Taibo, M. L., & Resches, M. 2014. Language development of low risk preterm infants up to the age of 30 months. Early Human Development 90(10), 649–656. DOI logoGoogle Scholar
Putnick, D. L., Bornstein, M. H., Eryigit-Madzwamuse, S., & Wolke, D. 2017. Long-term stability of language performance in very preterm, moderate-late preterm, and term children. The Journal of Pediatrics 181, 74–79. DOI logoGoogle Scholar
Saffran, J. R. 2001. Words in a sea of sounds: The output of infant statistical learning. Cognition 81(2), 149–169. DOI logoGoogle Scholar
Seidl, A., & Johnson, E. K. 2006. Infant word segmentation revisited: Edge alignment facilitates target extraction. Developmental Science 9(6), 565–573. DOI logoGoogle Scholar
Shukla, M., White, K. S., & Aslin, R. N. 2011. Prosody guides the rapid mapping of auditory word forms onto visual objects in 6-mo-old infants. Proceedings of the National Academy of Sciences 108(15), 6038–6043. DOI logoGoogle Scholar
Singh, L., Steven Reznick, J., & Xuehua, L. 2012. Infant word segmentation and childhood vocabulary development: A longitudinal analysis. Developmental Science 15(4), 482–495. DOI logoGoogle Scholar
Teixidó, M. 2017. Constraints on early word segmentation and mapping (Unpublished doctoral dissertation). University of Barcelona.Google Scholar
Teixidó, M., & Bosch, L. 2016. Exploring simultaneous word segmentation and word-referent mapping: Can pupil dilation explain differences between 6- and 9-month-old infants? AttLis workshop, Potsdam, Germany.Google Scholar
Wolke, D., & Meyer, R. 1999. Cognitive status, language attainment, and prereading skills of 6-year-old very preterm children and their peers: the Bavarian Longitudinal Study. Developmental medicine and child neurology, 41(2), 94–109. DOI logoGoogle Scholar