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It is well-established that toddlers can correctly select a novel referent from an 
ambiguous array in response to a novel label. There is also a growing consensus 
that robust word learning requires repeated label-object encounters. However, 
the effect of the context in which a novel object is encountered is less well-
understood. We present two embodied neural network replications of recent 
empirical tasks, which demonstrated that the context in which a target object 
is encountered is fundamental to referent selection and word learning. Our 
model offers an explicit account of the bottom-up associative and embodied 
mechanisms which could support children’s early word learning and emphasises 
the importance of viewing behaviour as the interaction of learning at multiple 
timescales.
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Toddlers perform impressively when confronted with the seemingly difficult task 
of choosing the referent of a new word in an ambiguous environment (e.g., Clark, 
1995). A rich empirical literature shows that children from as young as 18 months 
reliably map novel labels to novel referents without being explicitly taught the 
“correct” mapping (Axelsson, Churchley, & Horst, 2012; Carey & Bartlett, 1978; 
Houston-Price, Plunkett, & Harris, 2005). Theories as to the mechanisms underly-
ing referent selection range from innate, top-down knowledge to bottom-up asso-
ciative mechanisms. Early accounts proposed pre-existing word learning biases, or 
assumptions (Markman, 1990; Markman, 1994). For example, children’s tendency 
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to map novel labels to objects of the same type, rather than the same thematic cat-
egory could be guided by a taxonomic assumption (Markman & Hutchinson, 1984) 
by which the same “kind of things” share a label; hence, a new furry, barking animal 
is called dog, but a new bone-shaped toy is not. Similarly, a whole object assumption 
could explain why children preferentially map new labels to an entire object rather 
than one of its parts (Markman & Wachtel, 1988). Further, when confronted with 
an array of objects, all-but-one of which are familiar, children will reliably map a 
novel label to the novel object. This could be the result of a mutual exclusivity (ME) 
assumption, by which objects have one and only one label (Markman & Wachtel, 
1988; Merriman, Bowman & MacWhinney, 1989). For example, if a child sees a 
furry, barking animal, a scaly, swimming animal, and a pink, feathered animal, an 
ME assumption would prompt him/her to map the new label flamingo onto the 
feathered animal, because the other two objects are called dog and fish.

Although these constraints neatly describe what children do when hearing 
new words, precisely what children need to know in order correctly identify the 
referent of a new label is the subject of some debate. For example, Golinkoff and 
colleagues (1992) argued that children learn flexible lexical principles rather than 
possessing innate, hard-and-fast biases. Indeed, studies showing that word learn-
ing biases can be overridden by – or even depend on – sociopragmatic cues sug-
gest that referent selection is a flexible behaviour (Baldwin, 1993; Tomasello & 
Akhtar, 1995). The source of ME-type behaviour has been particularly controver-
sial. Clark (1990) argued for a principle of contrast by which children assume that 
adults use words consistently, so new labels must contrast in meaning to already-
known labels and therefore refer to previously unlabelled objects. In contrast, 
Mervis & Bertrand (1994) posited a novel-name-nameless-category (N3C) strategy, 
whereby children make a simple novelty-to-novelty mapping, linking new words 
directly to unlabelled objects. Others argue that they use a process of elimination, 
explicitly ruling out known competitor objects before mapping the novel label to 
the novel object (Halberda, 2006). Importantly, these accounts differ as to the im-
portance they place on children’s well-documented attentional bias towards novel 
over familiar items, or novelty preference (Fantz, 1964; Houston-Price & Nakai, 
2004). While attention to novelty is fundamental to N3C, its role in ME is less 
clear. Further, whichever mechanism underlies ME-type behaviour, it is disputed 
whether successful referent selection is the result of explicit, metacognitive rea-
soning about a label’s potential referents, or whether it is due to low-level associa-
tive processes (e.g., Smith, Jones, Yoshida, & Colunga, 2003).

Importantly, there is substantial evidence that simply disambiguating the ref-
erent of a novel word once is not on its own sufficient for word learning (Bion, 
Borovsky, & Fernald, 2013; Horst & Samuelson, 2008; Kucker, McMurray, & 
Samuelson, 2015; Mather & Plunkett, 2009; McMurray, Horst, & Samuelson, 2012; 
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Munro, Baker, McGregor, Docking, & Arculi, 2012; Twomey, Ranson & Horst, 
2014). Rather, word learning is the result of incremental cross-situational learning, 
in which label-referent mappings are gradually strengthened via repeated encoun-
ters with the mapping (e.g., Fazly, Alishahi, & Stevenson, 2010; Horst, McMurray 
& Samuelson, 2006; Smith & Yu, 2008; Yu & Smith, 2007; Yurovsky, Fricker, Yu, & 
Smith, 2014). For example, a child might learn that a furry, meowing animal with 
four legs is called cat after s/he encounters the label alongside a toy cat at nursery, a 
photograph of a cat in a storybook, and her pet cat at home. However, while there 
is a broad consensus that cross-situational learning is a domain-general learning 
mechanism that can drive word learning, developmental psychologists disagree 
about the mechanisms that allow children to solve the in-the-moment referent 
selection puzzle.

1. Computational and robotic insights into development

Recent interdisciplinary research has begun to address this issue by integrating in-
sights from developmental psychology with computational and robotic techniques 
to explore the perceptual and cognitive processes underlying empirically observed 
behaviour (Cangelosi & Schlesinger 2015; Gliozzi, Mayor, Hu, & Plunkett, 2009; 
McMurray et al., 2012; Morse & Cangelosi, in press; Samuelson, Smith, Perry, & 
Spencer, 2011; Westermann & Mareschal, 2014). Computational models of word 
learning simulate how children behave (e.g., pointing to the flamingo and not 
the dog or the fish) based on what they see and hear (e.g., one novel object, two 
known competitor objects and the novel word flamingo). Just like children, models 
have internal representations that change with learning which in turn give rise to 
certain behaviours. In sharp contrast to children, however, we can inspect these 
representations as they develop over time to examine the relationship between 
internal representation and external behaviour. Critically, because a model’s cog-
nitive mechanisms are explicitly defined, by examining the computations which 
drive representational change in the model, we can build an explicit account of 
the mechanisms that explain cognitive development in the child (Westermann 
& Mareschal, 2012). In all models, simplification is needed to render the work 
feasible. Thus, there are differences between learning in robotic simulations and 
learning in humans. However, these differences are essential to theory develop-
ment: simplification can tell us which components of a system are necessary for 
capturing a given behaviour (McClelland, 2009; Morse & Cangelosi, in press). 
Thus, simulations offer a unique opportunity for developing explicit, mechanistic 
theories of cognitive processes, which make clear predictions for subsequent em-
pirical testing.
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The goal of the current studies was to examine the potential mechanisms driv-
ing children’s behaviour in two word learning tasks. Recent work in computation-
al developmental psychology suggests that the body’s location in space plays an 
important role in young children’s early word learning (Morse, Benitez, Belpaeme, 
Cangelosi, & Smith, 2015; Samuelson et al., 2011). These studies suggest that us-
ing an embodied system is important for understanding the mechanisms driving 
word learning. Thus, we chose to explore these mechanisms using iCub, a devel-
opmental robot designed specifically as an embodied platform for developmental 
research (Cangelosi & Schlesinger, 2015; Metta et al., 2010). The following sections 
describe two robotic replications of recent empirical studies designed to explore 
the mechanisms thought to be at play in referent selection and word learning; 
specifically competition from non-target objects and referent novelty. Finally, we 
discuss the implications of the modelling work for our understanding of referent 
selection and word learning in children.

2. Experiment 1: The effect of competition on referent selection and word 
learning

2.1 Target empirical data

With the goal of narrowing down the possible mechanisms underlying ME-type 
behaviour, a recent empirical study directly tested the predictions of the N3C and 
ME accounts. Horst, Scott and Pollard (2010; henceforth HSP) explored which 
of these accounts best explained children’s word learning by manipulating the 
number of known competitor objects children saw during referent selection. N3C 
predicts that the number of known competitors should not affect word learning, 
because referent selection involves simply mapping novelty to novelty: on this 
account, competitors are irrelevant. In contrast, ME predicts that increasing the 
number of competitors present during referent selection will make the task more 
difficult, because children must rule out all known competitors before making the 
novel label-novel object mapping (see also Halberda, 2006).

2.1.1 Design and procedure
To test these predictions, HSP presented 36 30-month-old children with referent 
selection trials consisting of an array of 3D age-appropriate toys, one of which was 
novel and the rest of which were known. The number of competitor objects seen 
during referent selection varied between conditions: trials consisted of a novel ob-
ject and two, three, or four known competitors (see Fig. 1 for an example referent 
selection trial). In the two-competitor condition, for example, a trial might consist 
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of a plastic cone with multicoloured strings attached to it, a small plastic horse, 
and a small plastic block. In the four-competitor condition, a trial array might 
consist of the cone, the horse, the block, a spoon and a toy car. All other aspects of 
the design were held constant.

Example referent selection trial Example lest trialCondition

2-competitor

3-competitor

4-competitor

(e.g.) Which one’s the car?

(e.g.) Which one's the fode?

(e.g.) Which one's the �sh?

(e.g.) Which one's the fode?

Figure 1. Schematic of referent selection and test trials for the empirical and robot tasks.

During the referent selection phase, children were presented with four sets of ob-
jects, across eight referent selection trials. Each novel object was presented twice 
and served as a target once. On each trial, children were allowed to look at the 
objects for three seconds before being asked to select either a known or the novel 
object (e.g., known trial: Can you show me the car?; novel trial: Can you show me 
the fode?; target objects were named five times; thus, two trials per set.) Children 
therefore had an equal amount of experience with each novel target during refer-
ent selection, which is critical to enable a robust test of word learning (Axelsson & 
Horst, 2013). After referent selection children were presented with four test trials 
(see Fig. 1). Each of the four novel targets appeared on every test trial, and children 
were asked for each object in turn. If children had retained the novel label-object 
associations formed during the referent selection phase, then they should pick the 
target object at levels greater than expected by chance.

2.1.2 Results
In line with existing studies, children were very good at referent selection, per-
forming significantly above chance on both known and novel trials regardless of 
the number of competitors present. However, only children in the two-competitor 
condition retained novel labels at levels greater than expected by chance, and did 
so significantly more reliably than children in the three- and four-competitor con-
ditions (see red bars, Fig. 5). An analysis of reaction times during referent selec-
tion revealed that children in the two-competitor condition selected novel objects 
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marginally faster than children in the four-competitor condition. Thus, longer re-
action times during referent selection were related to poorer word learning. The 
authors reasoned that the disambiguation task in the two-competitor condition 
was less onerous than in the other conditions. Put differently, these children only 
had to identify two known objects before mapping the novel label to the novel 
referent – a quicker and simpler undertaking than identifying three or four known 
objects.

2.1.3 Paying attention to what an object is not
The authors concluded that referent selection – and eventual word learning – in-
volves paying attention to competitor objects in order to establish what the refer-
ent is not, as well as paying attention to the novel object to establish what it is 
(see also Fitneva & Christiansen, 2011; Zosh, Brinster, & Halberda, 2013). On this 
account, referent selection is influenced not only by novelty, but also by knowing 
the names of the competitor objects; subsequent word learning is therefore the 
product of learning which associations are correct (e.g., novel object-fode), but 
also of learning which associations are wrong (e.g., cow-fode; see also McMurray 
et al., 2012). The implication, therefore, is that word learning emerges from the 
interaction of multiple timescales of development: in-the-moment referent selec-
tion, medium-term cross-situational learning, and long-term vocabulary learning 
(McMurray et al., 2012). However, for a full understanding of word learning it 
is critical that we understand not just what children do, but also how. In the fol-
lowing simulations we make these mechanisms explicit by using a developmental 
robotic system (iCub; Metta et al., 2010) to implement a connectionist architecture 
(Epigenetic Robotics Architecture; Morse, de Greeff, Belpeame, & Cangelosi, 2010).

2.2 The iCub and the Epigenetic Robotics Architecture

iCub’s design reflects the approximate physical proportions of a 3-year-old child. 
iCub has 53 bodily degrees of freedom (neck: 3; eyes: 3; arms: 14; hand: 18; leg: 
12; torso: 3), and sensors (e.g., cameras, microphones), which encode a range of 
naturalistic perceptual input, approximating young children’s perceptual environ-
ments (see Fig. 2). Like children, then, iCub integrates visual, auditory, tactile and 
proprioceptive information to generate behaviour, for example auditory and vi-
sual information in a word learning task (although which modalities contribute 
to a given simulation are decided a priori by the modeller). Thus far, iCub has 
captured a range of developmental phenomena, for example motor development 
(Tikhanoff, Cangelosi, & Metta, 2011), visuomotor development (Shaw, Law, & 
Lee, 2014), intrinsically motivated exploration (Maestre, Cully, Gonzales, & 
Doncieux, 2015), affordance-based verb learning (Marocco, Cangelosi, Fischer, & 
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Belpaeme, 2010), and spatially-grounded noun learning (Morse et al., 2015; for a 
review see Cangelosi & Schlesinger, 2015).

Central Hub, 
i.e., iCub

Spoken wordShape 
information

Convert to 
HSV input

Shape SOM Colour SOM

+ +

--

blicket!

Figure 2. Model architecture

A version of the Epigenetic Robotics Architecture (ERA) served as the architecture 
in both the current simulations, as depicted in Figure 3. The ERA consists of a net-
work of Self-Organising Maps (SOMs; Kohonen, 1998): connectionist networks 
that reorganise their internal structure based on a winner-takes-all response to in-
put stimuli. At the end of learning, SOMs reflect the structure of the input in their 
own topological structure; that is, neurons that are close together in the network 
fire in response to perceptually similar stimuli (e.g., the colours red and pink). 
SOMs naturally lend themselves to categorisation of complex naturalistic stimuli 
such as inputs generated by iCub’s sensors.

The model comprises two visual SOMs that receive processed video informa-
tion from iCub’s cameras. One map receives an HSV (hue, saturation, value; Alvy 
Ray, 1978) spectrogram of each object in view and so represents colour, and the 
other receives shape information about each object (e.g., circleness, squareness, 
convexity, elongation; Montesano, Lopes, Bernardino, & Santos-Victor, 2008). 
Speech recognition, via the commercial software Dragon DictateTM, is used to pro-
vide speech-to-text input for the words, where each word dynamically activates a 
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single unit in a label field. The visual SOMs are bidirectionally coupled to the field 
of label inputs via Hebbian-like links to form a dynamic spreading activation net-
work. Objects that are primed cause iCub to look at them or to reach and point 
to them. A detailed discussion of the ERA is available in Morse et al. (2010). The 

Figure 3. iCub during referent selection.
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model is robust to parameter variation. Higher (or lower) learning rates, for ex-
ample, strengthen and weaken the response percentage globally, preserving the 
between group effects. However, a summary of the parameters relevant to this 
particular implementation is provided in the Appendix.

For an object in a particular region, colour information is extracted by deter-
mining the location in HSV colour space of each pixel in that region. Ignoring the 
white background of the table, pixels with a saturation value greater than a thresh-
old of 0.2 are allocated to one of 36 bins each representing 10 degrees of the 360 
degree HSV colour continuum, which generates a histogram-like colour profile 
for each object. Each object profile is unique and based on the entire range of the 
colour SOM. Thus, the model takes into account differences between uniformly 
and multicoloured objects.

2.3 Simulating referent selection and word learning in a robotic system

2.3.1 Design and procedure
The procedure in the robot experiment was kept as close as possible to the proce-
dure in the empirical task. As in the empirical study, the experiment was run 12 
times per condition and trial order and counterbalancing were the same. The ro-
bot was initially provided with background training to simulate infants’ everyday 
experience with objects prior to the onset of word learning (see Appendix).

2.3.1.1 Simulating children’s known vocabulary. To simulate children’s existing 
vocabularies, we taught the robot a “familiar” vocabulary in an initial training 
session (not including the novel words used in the subsequent experiment). The 
SOMs were provided with object and label input for the 18 competitor objects it 
would encounter during the referent selection phase. Based on recent empirical 
work demonstrating that individual objects tend to dominate infants’ visual fields 
during word learning (Smith, Yu, & Pereira, 2011), the experimenter placed each 
object centrally in the robot’s field of vision on a white surface and allowed the 
SOMs to settle – equivalent to allowing children to look at objects before providing 
the target label. Once the SOMs had settled (that is, once the system had formed 
a representation of that object; approximately 3s), the experimenter provided the 
label SOM with the appropriate input, keeping the object in view (reflecting the 
ostensive labelling shown to facilitate word learning in children; Axelsson et al., 
2012). Each object received 20 unambiguous labelling events. Thus, the robot 
began the experiment with a robust known vocabulary. Clearly, this vocabulary 
is substantially smaller than those of children in the empirical study, who had a 
mean productive vocabulary of 468.92 words according to a UK adaptation of the 
widely-used Macarthur-Bates Communicative Development Inventory (Fenson et 
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al., 1993; Klee, Marr, Robertson & Harrison, 2001). We made this assumption to 
render the task tractable, however the relationship between vocabulary and per-
formance in word learning tasks is the focus of existing research (e.g., Borovsky, 
Ellis, Evans, & Elman, 2015; Perry & Samuelson, 2011; Samuelson, 2002)

2.3.1.2 Cross-situational learning and referent selection. The robot was presented 
with the same referent selection and test trials as children in the empirical task, 
again across two-, three- and four-competitor conditions. During referent selec-
tion the robot was presented with four sets of objects on a white tabletop via eight 
referent selection trials. Each set consisted of a novel object and two, three or four 
known competitors selected from the pre-trained set (see Fig. 1 for an example 
referent selection trial). As in HSP, object locations and trial order were pseudo-
randomised across trials. Thus, the same set of objects was never presented on suc-
cessive trials, known/novel trials occurred no more than twice in succession and 
each novel label/object pair was encountered in first, second, third or last position 
equally often. All objects were placed in the robot’s field of vision and the SOMs 
were allowed to settle (intended to reflect the three-second pause before labelling 
in the empirical study). Then, the experimenter labelled the object five times with 
either a known (pretrained) or novel label. Following labelling, the robot moved 
its head to centre its field of vision on each object in turn, activating a node in the 
label SOM. If the SOM activated the appropriate label node for the target object, 
the robot’s response was scored as correct, and if not, the robot’s response was 
scored as incorrect. For example, on a known trial, activation of the horse node 
in response to the horse object would be scored correct, and activation of the yok 
label would be scored as incorrect. Each novel object was presented twice and 
served as a target once.

2.3.1.3 Testing word learning. After referent selection the robot was presented 
with four test trials that proceeded in an identical manner to the referent selection 
trials. As in the empirical study, each of the four novel targets appeared on each 
test trial, and each served as the target on one trial. If the model had learned and 
retained novel label-object associations during the referent selection phase, then it 
should activate the appropriate label node in response to each novel object at levels 
greater than expected by chance. Again, retention was scored by monitoring node 
activation.

2.3.2 Results
Results from the referent selection trials are depicted in Figure 4. In line with chil-
dren, the model successfully mapped known labels to known objects (100% correct 
on all known trials). Critically, the robot also mapped novel labels to novel objects, 
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and did so at levels greater than expected by chance (two-competitor: t(11) = 19.53, 
p < .0001, d = 7.84; three-competitor: t(11) = 9.93, p < .0001, d = 3.33; four-com-
petitor: t(11) = 8.94, p < .0001, d = 2.83. Note that chance = 0.33, 0.25 and 0.20 in 
the two-, three- and four-competitor conditions, respectively, and all t-tests re-
ported are two-tailed). Thus, the model captured HSP’s referent selection results, 
mapping novel labels to novel objects without explicit instruction or the ability to 
reason explicitly about its choices.
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Figure 4. Proportion correct of children’s (red bars) and the model’s (blue bars) correct 
choices on novel trials during referent selection, Experiment 1. ***p < .001 (compared to 
chance, as stated in the text).

Results from the test trials are depicted in Figure 5. Here, the model retained nov-
el label-object mappings at levels greater than expected by chance (0.25) in the 
two-competitor condition only (two-competitor: t(11) = 8.86, p < .0001, d = 5.34; 
three-competitor, t(11) = 1.39, ns., d = 0.84; four-competitor, t(11) = 0.56, ns., 
d = 0.34). This is the same pattern of results observed in the empirical study. We 
submitted the model’s proportion of correct choices on test trials to an ANOVA 
with condition (two-competitor, three-competitor, four-competitor) as a between-
subjects factor. The effect of condition was significant, F(1,34) = 34.19, p < .0001, 
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η2
G = 0.50; planned comparisons revealed that the model made significantly more 

correct choices in the two-competitor condition than in the three- or four- com-
petitor conditions (both ps < .0001). The model therefore also captured HSP’s re-
tention results.
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Figure 5. Proportion correct of children’s (red bars) and the model’s (blue bars) correct 
choices on test trials, Experiment 1. ***p < .001 (compared to chance; 0.25).

To compare the robot and empirical data, we submitted proportion correct choic-
es for both datasets to an omnibus ANOVA with data (empirical, robot) and con-
dition (2-competitor, 3-competitor, 4-competitor) as between-subjects factors and 
trial (referent selection, retention) as a within-subjects factor, and their associ-
ated interactions. Results are reported in Table 1; critically, as highlighted in bold, 
whether data were empirical or robotic had no effect on responses. Thus, word 
learning in this embodied simulation can emerge from the interaction between 
long-term vocabulary learning, and in-the-moment referent selection, without the 
need for top-down reasoning.
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Table 1. Results from omnibus ANOVA, Experiment 1.

Effect df F p η2
G

Data  (1,66)    0.021 0.89    .00010

Condition  (2,66)  25.99    < .001*** .20

Trial (2,132) 228.70    < .001*** .70

Data x condition  (2,66)   0.44 0.65    .00042

Data x trial (2,132)   0.71 0.49   .0073

Condition x trial (4,132)   8.72    < .001***  .015

Data x condition x trial (4,132)   0.50 0.74  .010

2.4 Discussion

In Experiment 1 we used an embodied neural network model (Metta et al., 2010; 
Morse et al., 2010) to replicate 30-month-old children’s behaviour in a word learn-
ing task (Horst et al., 2010). Children in the empirical task were presented with 
a referent selection phase in which they were asked to select novel objects in re-
sponse to novel labels, from an array in which all other objects were known. When 
tested on retention of novel label-object mappings, only children who had initially 
encountered novel objects alongside two competitors successfully retained those 
mappings; children who saw more competitors did not retain novel labels. We 
taught the model a known vocabulary and then presented it with a maximally 
similar task. The model correctly mapped known and novel labels to target objects 
during referent selection – that is, it exhibited the same in-the-moment referent 
selection as the children. At test, only when novel objects had initially been en-
countered alongside two (but not three or four) competitors did the model suc-
cessfully retain label-object mappings, again replicating children’s behaviour in 
HSP.

2.5 “Mutual exclusivity” can emerge from simple associations

By implementing the ERA in iCub we demonstrate that a behaviour some have 
argued to depend on complex, top-down inferential reasoning (Markman, 1990; 
Markman, 1994) can emerge from low-level associative processes. Word learning in 
the two-competitor condition demonstrates that simply reinforcing newly-formed 
label/object associations via cross-situational learning allows these associations to 
be reactivated without supporting context, that is, known competitor objects (cf. 
Smith & Yu, 2008). Finally, we capture the effect of competition seen in the em-
pirical task, demonstrating that the complex world learning phenomena seen in 
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HSP can emerge from the simple associative mechanisms governing the model’s 
behaviour. We return in detail to these mechanisms in the General Discussion.

Overall, then, Experiment 1 demonstrated that ME-type behaviour can arise 
from simple associative learning across situations without the need for a top-
down, metacognitive reasoning system. Importantly, in both Experiment 1 and 
HSP novelty was controlled: children and the model encountered every novel ob-
ject and every novel label an equal number of times during the referent selection 
phase. Indeed, if novelty had been driving behaviour during this phase, the novel 
object would have been chosen even in response to known labels. Clearly, novel 
objects were not so salient to children or iCub that ME-type behaviour during 
referent selection was overridden. Nonetheless, children’s novelty preference is 
well-documented in a range of paradigms (e.g., Fantz, 1964; Golinkoff, Ma, Song, 
& Hirsh-Pasek, 2013; Houston-Price & Nakai, 2004), and it remains possible that 
increased attention to novelty may affect children’s referent selection when relative 
novelty between referents is manipulated. Horst, Samuelson, Kucker & McMurray 
(2011; henceforth HSKM) therefore explored the extent to which relative referent 
novelty affects children’s choices during referent selection.

3. Experiment 2: The effect of novelty on referent selection

3.1 Target empirical data

HSKM presented 12 24-month-old children with referent selection trials consist-
ing of three known or three novel objects, presented in the same manner as in HSP 
with similar stimuli. Critically, children had been allowed to play with a subset of 
the novel objects before the experiment began. Thus, on novel trials, one “super 
novel” object had never been seen before, and none of the three objects had been 
labelled. On each trial, the experimenter asked the child to retrieve an object with 
a known label on known trials (e.g., Which one is the cow?) or a novel label on nov-
el trials (e.g., Which one is the fode?). If the small amount of engagement with the 
objects before referent selection was sufficient to render them “familiar,” on novel 
trials children should systematically reject these just-seen objects as candidate ref-
erents and map the label to the supernovel object. However, if object novelty plays 
no part in referent selection, children should respond at chance levels.

Again, as expected, children selected the known object in response to the 
known label at rates greater than expected by chance. Critically, on novel object 
trials, children systematically chose the supernovel object. Thus, just two min-
utes’ experience with objects before referent selection was sufficient to trigger chil-
dren’s novelty preference. Critically, HSKM demonstrated that referent selection, 
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hitherto assumed to be a linguistic mechanism, is affected by nonlinguistic factors, 
and specifically, object salience as mediated by novelty. Nonetheless, the question 
of how children solved the novel referent selection trials remains unanswered – is 
this behaviour the result of children explicitly reasoning about what they had or 
had not previously seen, or could it emerge from low-level associative learning? 
We explored this by using the same robotic system in a similar task to replicate 
HSKM’s empirical results.

3.2 Design and procedure

Model architecture and model parameter were the same as in Experiment 1.

3.2.1 Simulating children’s known vocabulary
We pre-trained the robot with 12 known objects using the same procedure as in 
Experiment 1.

3.2.2 Cross-situational learning and referent selection
Procedure on referent selection trials was identical to the procedure used in 
Experiment 1. The experimental design followed HSKM, and we ran the simula-
tion 12 times to reflect the 12 participants in the empirical study. Specifically, over 
the course of the experiment, the robot saw 12 known and 12 novel toy objects. 
However, before referent selection the experimenter prefamiliarised the robot with 
eight of the objects by presenting each object centrally in the robot’s field of vision 
on a white surface and allowing the SOMs to settle, in line with the two-minute 
prefamiliarisation phase in HSKM. Critically, no object was labelled during this 
phase. During referent selection the robot was presented with four known and 
eight novel trials. Each known trial set consisted of three different objects from the 
set of pre-trained known objects. Each novel trial consisted of two prefamiliarised 
novel objects and one supernovel object labelled with a different novel word. Each 
supernovel object appeared once, and pre-familiarised objects were counterbal-
anced such that each trial consisted of a different combination of objects.

3.3 Results

Results are depicted in Figure 6. As anticipated, the model successfully mapped 
known labels to known objects (t(11) = 16.43, p < .0001, d = 6.51), replicating 
the results of the known referent selection trials in the current Experiment 1. 
Critically, on novel trials, the model mapped novel labels to supernovel objects 
at rates greater than expected by chance (t(11) = 15.27, p < .0001, d = 6.36). To 
compare the robot and empirical data we submitted proportion correct choices for 
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both datasets to an omnibus ANOVA with data (empirical, robot) as a between-
subjects factor, trial (known, novel) as a within-subjects factor, and a data-by-trial 
interaction term. Overall, there were more correct responses on known than novel 
referent selection trials. Critically, however, whether data were empirical or ro-
botic had no effect on responses. Thus, Experiment 2 captured the empirical data 
presented in HSKM, and specifically, the remarkable effect of novelty on referent 
selection by which even brief familiarisation with novel objects prior to the refer-
ent selection task leads children – and iCub – to systematically map novel labels to 
never-before-seen, supernovel objects.
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Figure 6. Proportion correct of children’s (red bars) and the model’s (blue bars) correct 
choices on known and novel referent selection trials, Experiment 2. ***p < .001 (com-
pared to chance; 0.33).

Table 2. Results from omnibus ANOVA, Experiment 2.

Effect df F p η2
G

Data (1,22) 1.38 .25  .022

Trial (1,22) 6.05  .022 .15

Data x trial (1,22) 0.25 .62   .0071
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4. Discussion

Experiment 2 extended the findings of Experiment 1 by exploring the effect of 
novelty on children’s referent selection reported by Horst and colleagues (HSKM; 
2011). HSKM presented children with multiple three-object referent selection tri-
als. On known trials, children systematically choose the correct target referent from 
an array of three known objects. On novel trials, children were asked to choose a 
referent from an array of three novel objects; however, two of the novel objects 
were more familiar than the third, having been briefly presented to children before 
the task (without labelling). Children systematically mapped novel labels to the 
“supernovel” object. We presented the same embodied robotic system described in 
Experiment 1 with HSKM’s referent selection task and replicated the novelty effect 
seen in children’s responding – and again, without building in a mechanism for 
reasoning about whether it had encountered objects previously. Convergent with 
McMurray et al. (2012), the current studies demonstrate that apparently complex 
word learning behaviour can emerge over time from the dynamic interaction of 
multiple timescales. Specifically, long-term vocabulary acquisition facilitates me-
dium-term cross-situational learning by supporting in-the-moment referent selec-
tion (McMurray et al., 2012). In the following section we discuss these timescales 
and their interactions with the mechanisms driving word learning in our system.

5. General discussion

The current simulations capture children’s ability to learn words in the widely-
used referent selection tasks described by HSP and HSKM (Faubel & Schoner, 
2008; although for a pilot study, see Twomey, Horst, & Morse, 2013). Like referent 
selection and word learning in children, these phenomena in the current simula-
tions are affected by competition and novelty during initial disambiguation. As 
such, this work supports associative accounts of word learning: referent selection 
and word learning in the current simulations can emerge bottom-up from simple 
associations, without recourse to a complex, top-down reasoning system (Smith, 
2000). Critically, because computational models in general make mechanisms ex-
plicit (Westermann & Mareschal, 2012), our embodied neural network simula-
tions not only capture what children in the empirical tasks did, but also suggest 
how they did it. As with all computational and robotic models, however, this ac-
count needs to be tested: if the assumptions of this model reflect the mechanisms 
underlying learning in human children, it should be possible to use an experimen-
tal task to capture the predictions our model makes about children’s behaviour. 
These predictions and related empirical work are discussed in more detail below.
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6. Referent selection via cross-situational associative learning

The referent selection task in Experiment 1 supports the ME account of the pro-
cesses underlying children’s referent selection and word learning, demonstrating 
that referent selection involves attention to known competitor objects as well map-
ping the novel label to the novel object (see also Fitneva & Christiansen, 2011; 
Zosh et al., 2013). Specifically, because inhibition from the strong known label-
known object connections prevents the formation of new known label-novel 
object connections, meaning that the only mapping not subject to inhibition on 
novel label trials is that between the novel label and the novel object. Thus, in 
line with McMurray et al. (2012), Experiment 1 points to an account of referent 
selection not as a bias towards novel, unlabelled referents, but as a bias away from 
known, labelled referents.

Experiment 2 elaborates this account. Here, we see that referent selection is 
not a purely linguistic phenomenon, but rather an interplay between linguisti-
cally- and visually-mediated information – when labelling is controlled for, the 
novelty of the objects themselves affects whether children (or the model) learn the 
names for those objects (Kucker & Samuelson, 2011). Further, these data make a 
strong prediction for future empirical work. On a given novel trial, the model’s 
mapping of novel labels to the supernovel objects hinged critically on the char-
acteristics of the three potential targets – only when all three objects shared some 
visual characteristic (e.g., colour) were label/just-seen object mappings inhibited 
sufficiently for the model to map the novel name to the novel referents. Thus, 
Experiment 2 makes the novel, testable prediction that referent selection should 
be affected by the degree of perceptual similarity between objects. An empirical 
test of this prediction is underway.

7. Multiple timescales and the effect of embodiment

The current work shows that word learning can emerge from the interaction of 
knowledge across multiple timescales (cf. Horst et al., 2006; Smith, Colunga, & 
Yoshida, 2010; Thelen & Smith, 1994). The longest timescale relates to vocabu-
lary. Participants began these experiments with a pre-existing vocabulary; in the 
model’s case, a pre-trained set of robust label-object mappings, and in children’s 
case, a set of known words built up over the preceding 24 months. The intermedi-
ate timescale relates to cross-situational learning during the course of the study. 
The robot learns words by forming and strengthening associations between the 
label node and the representations in the colour and shape SOMs on every novel 
label trial, while children formed and strengthened associations between novel 
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labels and novel objects by completing multiple referent selection trials. The in-
the-moment timescale relates to the disambiguation task itself. Here, long-term 
vocabulary knowledge interacts with online information in the visual scene: labels 
for the known objects are activated when their referents are recognised. Using a 
robotic system allows us to watch this mechanism unfold, and shows that label ac-
tivation (in the absence of hearing that label) is critical for this ME-type behaviour. 
While 18-month-old infants have been shown in a visual priming task to activate 
labels when their referents are seen in silence (Mani & Plunkett, 2010), testing 
this prediction in a word learning task remains an important challenge for future 
empirical work.

Importantly, the current work illustrates an additional timescale: the micro-
level temporal dynamics of activation decay during the time taken to look from 
one object to another. During referent selection the robot was provided with a 
label, which caused a spike of activation in the relevant label node. The robot then 
“looked” at each object in turn to establish whether the current label was associ-
ated with each object. Note that because “looking” involved a physical turn of the 
robot’s head, looking at all objects took less time in the two-competitor condition 
than in the four-competitor condition (this was also the case for children in the 
empirical study). In addition, activation in the label node decayed over time. Thus, 
since learning was applied at the end of the trial, label-object mappings were weak-
er in the three- and four-competitor conditions than in the two-competitor condi-
tion; so weak, in fact, that the model was unable to reactivate them sufficiently to 
form correct mappings at test. In line with existing embodied explorations of word 
learning, which show that the spatial orientation of the body can affect the forma-
tion of label-object mappings (Morse et al., 2015; Samuelson et al., 2011), the cur-
rent work demonstrates that the layout of the task environment entrains the spatial 
location of the robot’s head, which in turn affects the amount of time required to 
encode all objects in the array. Our model therefore predicts that children’s perfor-
mance in similar tasks can be boosted or impaired by reducing or increasing the 
amount of time it takes to scan all possible referents of the novel words by increas-
ing the spatial distance between them. Critically, this prediction would not have 
emerged from a non-embodied system without building in a timing mechanism 
a priori (e.g., look at the first object at 2s, the second at 4s, and the third at 5s). 
Thus, this prediction emerged “for free” from the interaction between the SOMs’ 
learning mechanism and the iCub’s body. Capturing this prediction empirically 
would strongly support the current hypothesis that the body affects word learning 
via micro-level temporal interactions. An experiment with two-year-old children 
is planned to provide the critical test of this account.

Both the empirical and robotic studies discussed here involved a simpli-
fied learning environment and a highly structured task relative to the real-world 
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learning environment children experience outside the lab (Horst & Simmering, 
2015; Oudeyer & Smith, 2016). It is therefore possible that while low-level associa-
tive learning can account for the results of HSP and HSKM, additional informa-
tion such as sociopragmatic cues (e.g., Brooks & Meltzoff, 2005; Moore, Mueller, 
Kaminski, & Tomasello, 2015; Schulze & Tomasello, 2015), distributional infor-
mation (e.g., Gillette, Gleitman, Gleitman, & Lederer, 1999; Medina, Snedeker, 
Trueswell, & Gleitman, 2011; Twomey, Chang, & Ambridge, 2014; Yuan, Fisher, 
& Snedeker, 2012) or existing semantic category representations (e.g., Borovsky 
et al., 2015; Borovsky & Elman, 2006) may play a part in iCub’s – and children’s – 
word learning in more complex environments, pointing to further fruitful work 
in the rapidly-expanding field of developmental robotics. Overall, however, the 
current studies represent the first full experimental replication of the results of a 
widely-used word learning paradigm using an embodied robotic system. As such, 
they contribute in a broader sense to the emerging interdisciplinary literature 
in the cognitive sciences that in recent years has begun to apply mathematical, 
computational and robotic innovations to some of the decades-old enigmas of 
developmental psychology. In parallel, the current work helps us build an explicit 
account of the complex and subtle temporal, environmental and physiological in-
teractions that drive word learning and cognitive development.
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Appendix

Input SOMs were initialised with random connection weights. To provide an approximation of 
the developmental history children accumulate prior to learning their first words (that is, via 
encounters with multiple objects simultaneously), the 20 objects used in this study were simul-
taneously placed in view and the SOMs trained using standard equations 1 (SOM activity) & 2 
(SOM learning rule; Kohonen, 1998):

 (1) BMU = argmax (1 – √∑(aj – wij))

Where the Best Matching Unit (BMU; i) is the unit whose weight vector w is closest to the cur-
rent input vector a.

 (2) ∆wij = aexp ( – dist2
2size

) (ajwij)

The weights of each unit j in the neighbourhood of the BMU are then modified to move closer 
to the current input vector, with changes scaled according to the distance of that unit from the 
BMU (dist) in the SOM (i.e., not in terms of the input space) and neighbourhood size (size).
 As is typical of SOMs (Gurney, 1997), the neighbourhood size and learning rate (α) decrease 
monotonically until the neighbourhood size is 1 to allow the network to settle into a stable state, 
at which point both the neighbourhood size and the learning rate of the SOM are fixed to allow 
learning to continue at a low rate.
 The two SOMs and the label field are fully connected via Hebbian-type links (Hebb, 1949; 
Munakata & Pfaffly, 2004), which propagate activation as in equation 3 (IAC spreading activa-
tion; cf. McClelland & Rumelhart, 1981) and learn as in equation 4 (Hebb-like learning rule):

 (3) neti = Σwijaj + βBMU
  If neti > 0 ∆ai = (max − ai)neti − decay(ai − rest)
  Else ∆ai = (ai − min)neti − decay(ai − rest)

The net input (neti) to each unit in the whole network is either

– the sum of spreading activation
–  or, the sum of spreading activation plus external activation if this node happens to be the 

BMU of a SOM or a currently active label.
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Parameter values for both robotic tasks were as follows: External Input Bias (β) = 0.5; Max = 1; 
Min = − 0.2; Decay = 0.5; Rest = − 0.01.

 (4) If ai > 0 OR aj > 0:
  – if aiaj > 0 ∆vij = λaiaj(1 − vij)
  – else ∆vij = λaiaj(1 + vij)
   else ∆vij = 0

The Hebb-like learning rule increases the strength of a weight (v) between SOMs if both units 
connected by this weight are positively active, or reduces its strength if only one is positively 
active. This change is scaled according to the product of the units’ activity and how close the 
weights are to 1 or − 1, respectively, for positive and negative weight changes. Finally each field 
is fully connected by fixed inhibitory connections. The experiment reported here used the learn-
ing parameter value λ = 0.005.
 Note that adaptive connections exist only between the SOMs and label field, while constant-
valued (−0.8) inhibitory spreading activation connections exist within each SOM and within the 
label field.
 All other model parameters are the same as reported by Morse et al. (2015). The architecture 
itself differs in that it includes separate shape and colour SOMs, but does not include a SOM 
receiving postural input.
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