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Previous studies have reported perceptual advantages, such as when dis-
criminating non-native linguistic or musical pitch differences, among first-
year infants growing up in bilingual over monolingual environments. It is
unclear whether such effects should be attributed to bilinguals’ enhanced
perceptual sensitivity and/or cognitive abilities, and whether such effects
would extend to adulthood. Twenty-four Dutch, 24 Dutch simultaneous
bilingual (DSB), and 24 Chinese Mandarin speakers were examined by
three sets of tasks assessing their linguistic pitch and music perception,
executive function, as well as interactions across these modalities. Results
showed degrees of advantages for DSB and Chinese participants’ over their
Dutch peers in lexical tone discrimination and pitch-related music tasks. In
tasks related to executive function, no difference was observed between
DSB and Dutch participants, while Chinese participants’ performances
were modulated by cognitive interference of language processing. Findings
suggest that listeners’ enhanced sensitivity to linguistic and musical pitch
may stem from acoustic (DSB) and experience (Chinese) rather than cogni-
tive factors. Moreover, Dutch participants showed robust correlations
between their linguistic and musical pitch perception, followed by limited
correlations in DSB, and virtually no correlation among Chinese partici-
pants, illustrating how distinct language experiences can lead to specific
pitch perception patterns between language and music.

Keywords: lexical tone, musical pitch, bilingualism, enhanced sensitivity,
executive function

Language and music are two universal human capacities that coexist across cul-
tures and societies (Nettl, 2000; Patel, 2008). The exploration of the inter-
relationship between the two domains, such as the perception of linguistic and
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musical pitch, can increase our understanding of domain-general and -specific
mechanisms that drive auditory perception. Meanwhile, listeners’ linguistic expe-
rience plays a key role in their auditory perception and arguably cognitive func-
tions. With respect to auditory perception, infants growing up in a bilingual
environment show enhanced sensitivity to linguistic and musical tones (Liu &
Kager, 2017a, 2017b). It remains unclear whether such sensitivity can be observed
in bilingual adults as well as bilingual children. In addition, bilingualism has
also been argued to lead to enhanced inhibitory control and executive functions,
among other cognitive abilities (Bialystok, Craik, Klein & Viswanathan, 2004).
This study was conducted to examine the inter-relationship among listeners’ lin-
guistic experience, pitch perception and their executive function.

Human sensitivity to prosodic features in language and music (e.g., pitch,
rhythm) emerges in neonates (Nazzi, Bertoncini & Mehler, 1998; Winkler, Háden,
Ladinig, Sziller & Honing, 2009). In the first year after birth, infants attune to
their native language (Werker & Tees, 2002) and culture-specific music conven-
tions (Hannon & Trainor, 2007; Soley & Hannon, 2010). In the speech domain,
this process affects our perception of not only segmental (Kuhl et al., 2006) but
also suprasegmental features (Mattock & Burnham, 2006) such as lexical tones,
word-level pitch variations that lead to changes in meaning (Yip, 2002). Lacking
lexical tonal experience, post-attunement infants (Liu & Kager, 2014) and adults
(Song, Skoe, Wong & Kraus, 2008) exposed to non-tone languages do not dis-
criminate tones in the same way as their tone-language peers.

Much debate has been given to pitch lateralization in the processing of lin-
guistic pitch. The functional hypothesis argues for an asymmetry in pitch pro-
cessing between cerebral hemispheres based on functions of pitch. On the one
hand, a left-hemispheric dominance would surface for pitch patterns carrying
heavier linguistic load like lexical tone whereas a right-hemispheric dominance
would appear for those with lighter linguistic load such as affective intonation.
Such asymmetry appears to be exaggerated in tone language speakers but not in
non-tone language listeners (Bidelman & Chung, 2015; Wang, Jongman & Sereno,
2001). On the other hand, the acoustic hypothesis argues for a right-hemispheric
dominance for general pitch processing (Wong, 2002). Irrespective of the com-
peting hypotheses for linguistic pitch, a right-hemispheric superiority is reported
in musical pitch perception (Francis, Ciocca, Ma & Fenn, 2008; Klein, Zatorre,
Milner & Zhao, 2001; Tervaniemi et al., 1999; Zatorre, Belin & Penhune, 2002).
Taken together, studies suggest asymmetrical perception between linguistic and
musical pitch (Gandour et al., 2004).

In addition, neurological and psychophysiological studies demonstrate paral-
lel resources at neural levels across the two domains (Koelsch et al., 2002; Patel,
2008). The memory and learning mechanisms for language and music, as well
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as sound, prosodic, and grammatical structures of the two fields share similar
developmental underpinnings (McMullen & Saffran, 2004). Compared to their
non-tone language peers, tone language speakers show better imitation and per-
ceptual discrimination ability of musical pitch (Pfordresher & Brown, 2009). The
enhanced musical pitch perception and production among tone-language listen-
ers may stem from their improved sensitivity in detecting subtle pitch contour
and interval changes. A similar correlation has been found in the opposite direc-
tion, where musicians outperform their non-musician peers in not only musi-
cal (Burnham & Brooker, 2002) but also linguistic pitch perception (Bidelman,
Hutka & Moreno, 2013; Delogu, Lampis & Olivetti Belardinelli, 2006, 2010; Lee
& Hung, 2008). Musical training appears to sharpen listeners’ subcortical encod-
ing of general pitch patterns (Patel & Iversen, 2007; Wong, Skoe, Russo, Dees &
Kraus, 2007). Auditory brainstem response studies reveal that both tone language
and music experience can increase listeners’ linguistic and musical pitch-tracking
accuracy (Bidelman, Gandour & Krishnan, 2011a). Moreover, non-tone language
listeners exhibit a correlation of their perceptibility between linguistic and music
pitch (Chen, Liu & Kager, 2016): Speakers of Chinese and Dutch, a tone and non-
tone language respectively, were tested on their linguistic pitch discrimination
using the Montreal Battery of Evaluation of Amusia (MBEA, Peretz, Champod
& Hyde, 2003) and Musical Ear Test (Wallentin, Nielsen, Friis-Olivarius, Vuust
& Vuust, 2010). Chinese participants outperformed their Dutch peers on the two
music test results. In addition, a correlation was found between non-tone lan-
guage listeners’ linguistic pitch and musical test performances, a pattern miss-
ing among tone language listeners. The findings are two-fold. On the one hand,
shared neural resources may be recruited for the processing of language and
music, and listeners’ fine-tuning of critical auditory dimensions in one domain
may impact their ability in the other. On the other hand, results favour a uni-
fied processing of cross-domain pitch perception for non-tone language listeners,
but for tone language listeners, lexical tones are perceived as phonological cate-
gories, different from musical tones which do not play a phonemic role. Evidence
of a split hypothesis also emerges in amusia studies where tone language speakers
show successful production and discrimination of native lexical tones (Liu et al.,
2012; Nan, Sun & Peretz, 2010).

Given that one’s linguistic experience influences one’s perception of language
and music, it is interesting to examine the potential impact of bilingualism on
speech and music processing. Bilinguals have been shown to exhibit enhanced
sensitivity and perceptual flexibility to phonetic distinctions (Werker, 1986),
which subsequently manifest in their advantage in learning non-native speech
contrasts phonetically similar to their native language(s) (Antoniou, Liang,
Ettlinger & Wong, 2015). In addition, their subcortical encoding of fundamental
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frequency (F0), a feature underlying pitch perception and grouping of auditory
objects, appears to be enhanced (Krizman, Marian, Shook, Skoe & Kraus, 2012).
These advantages emerge from infancy, where bilingual infants demonstrate
enhanced sensitivity in language and music perception (Liu & Kager, 2016). For
example, while Dutch infants reached adult-like sensitivity to linguistic pitch
by 18 months, simultaneous-bilingual Dutch infants achieved approximately the
same level of sensitivity 6 months earlier (Liu & Kager, 2014, 2017a). Moreover,
when hearing a violin contrast that differed solely in F0, 9-month-old Dutch
bilingual infants showed more robust perceptual sensitivity than their monolin-
gual peers (Liu & Kager, 2017b). Studies have reported that listeners’ auditory
system encodes F0 more robustly and efficiently if they grow up in a bilingual
environment, promoting experience-dependent neural plasticity (Krizman et al.,
2012). These findings lead to the hypothesis that bilinguals have enhanced audi-
tory sensitivity.

The nature of such enhanced sensitivity remains a matter of discussion. One
explanation is that such an advantage may stem from the complex linguistic envi-
ronment bilinguals are facing. The Native Language Magnet Theory Expanded
(NLM-e) model (Kuhl et al., 2008) suggests that more condensed phonetic envi-
ronments may lead to more specialized category formation during the neural
commitment stage given sufficient input. It is not unlikely that bilinguals, having
refined categories from both of their languages, would transfer this to general
auditory perception, evidenced from abovementioned findings.

Another possibility is that bilinguals may have better cognitive control abil-
ities. After all, auditory perception cannot be singled out from other cognitive
functions such as attention and working memory. The effect of bilingualism on
cognitive functions has been widely studied across the lifespan (Bialystok, Martin
& Viswanathan, 2005; Carlson & Meltzoff, 2008). It has been argued that bilin-
guals need to constantly select the right language and suppress the irrelevant
ones based on the given context or situation, which fine-tunes their cognitive
control capacities that require selective attention and inhibition such as execu-
tive function. Executive function is an umbrella term that incorporates a collec-
tion of inter-related processes responsible for goal-directed behavior (Anderson,
2002; Gioia, Isquith & Guy, 2001). For example, it has been argued that bilinguals’
constant code-switching of their two languages will strengthen their abilities
to attend to relevant aspects of a situation and ignore irrelevant information
(Bialystok, 1999). The bilingual environment appears to yield structural and func-
tional changes in cortical and subcortical regions dedicated to not only language
processing but executive function as well (Crinion et al., 2006; Kim, Relkin, Lee
& Hirsch, 1997; Krizman et al., 2012). On the other hand, bilingual executive func-
tion advantages have been argued to be restricted to specific circumstances (Paap
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& Greenberg, 2013). Recent meta-analytic reviews reported no evidence for a cog-
nitive control advantage among bilingual adults across ages after publication bias
is corrected (e.g., Lehtonen et al., 2018). This leaves the possibility that bilinguals’
enhanced cognitive ability may not facilitate auditory perception.

To further our understanding of bilingual enhanced acoustic sensitivity, cog-
nitive ability, and their interplay, we adopted a three-domain by three-language
design, where tone (Mandarin Chinese), non-tone (Dutch) late bilingual and
non-tone (Dutch) simultaneous bilingual listeners were tested with lexical tone
and musical pitch discrimination tasks as well as tasks measuring executive func-
tions. Specifically, we selected non-musicians as participants to limit the influence
of music training. Lexical tone discrimination was examined with an AX par-
adigm using acoustically salient and non-salient contrasts (Liu & Kager, 2014).
Music perception was measured by the standard battery, the Montreal Battery
on Evaluation of Amusia (MBEA) (Peretz et al., 2003). Executive function and
specifically inhibition and switching abilities were measured using Stroop, Trail
Making, and Digit Symbol Substitution tests. We ask whether listeners’ lexical
tone perception, musical pitch discrimination and cognitive abilities differ as a
function of different language experiences. We hypothesize higher accuracy in
lexical tone and music processing for Chinese and DSB than for Dutch listen-
ers. We further hypothesize that simultaneous bilinguals perform better in exec-
utive function tasks than their sequential bilingual peers. As for the interplay, we
hypothesize that pitch perception is more unified across linguistic and musical
domains for non-tone language listeners. For Chinese listeners, a potential cor-
relation in pitch perception will favour the unified hypothesis on cross-domain
perception, and lack of such correlation will mark the impact of phonological cat-
egories established through previous native language experience.

Methods

Participants

Twenty-four Dutch (μ: 22.79 years, 6 male), 24 Dutch simultaneous bilingual
(DSB, μ: 23.71 years, 9 male) and 24 Mandarin Chinese (μ: 27.50 years, 7 male)
speakers were recruited in Utrecht area to participate in the experiment. All partic-
ipants reported normal hearing sensitivity and no previous history of neurological
or psychiatric illnesses. Dutch and Chinese participants had comparable years of
exposure to English as late learners (μDutch : 14.38, μChines e: 16.33, p= .178). By con-
trast, DSB speakers had consistent exposure to another native language since birth
(see Appendix I), and used both of their native languages on a regular basis in daily
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activities. None of the Dutch participants had experience in a tone or pitch-accent
language. The three groups of participants did not differ in overall formal musi-
cal training in years (μDutch : 2.88, μChines e: 2.54, μDSB : 2.83, p= .948). None of the
participants was a musician, nor had they received music instruction, training or
practice adjacent to the time of the experiment. Participants were tested on 3 sets
of experiments in order to measure their linguistic pitch sensitivity, executive func-
tion and musical sensitivity.

Experiment 1. Linguistic pitch perception

Stimuli

A female native speaker of Mandarin Chinese recorded tokens of monosyllable
/ta/ in isolation, four carrying the high-level (T1) and four the high-falling (T4)
using the computer program Audacity via a Genelec 1029A Active Speaker system
in a sound-proof booth at the phonetics lab of Utrecht University. The four
naturally-produced T1-T4 pairs (Figure 1, contrast A= T1-T4) were further manip-
ulated in PRAAT (Boersma & Weenink, 2009). First, stimuli intensity (65dB) and
duration (376 ms) were controlled. Second, four interpolation points along each
pitch contour (at 0%, 33%, 67% and 100%) were introduced. Third, the F0 values
occurring at 3/8 and 3/4 of the pitch distance of the original T1 & T4 tokens were
calculated at these interpolation points (Appendix II). Linking these points, eight
new pitch contours / four new pairs were generated (Figure 1, contrast B = con-
tracted T1–T4). Contrast B thus shrunk the perceptual distance between the two
tokens of contrast A. In other words, the acoustic salience of contrast B was weak-
ened solely by the manipulation of F0, making them more “difficult” to perceive
than contrast A which was perceptually “easy” (Liu & Kager, 2014, 2016). Five
native speakers of Mandarin Chinese listened to the stimuli in the environmental
settings and ensured that they sounded natural. Moreover, the eight pairs (four
contrast A and four B) were presented in two orders (e.g., T1–T4, T4–T1) each,
resulting in a total of 16 pairs to be used in the AX discrimination task.

Procedure

To reduce the cognitive load on auditory memory for non-tone language listeners
who are unfamiliar with non-native tones, we selected AX over AXB or other dis-
crimination tasks (Gerrits & Schouten, 2004). Participants finished a self-paced
AX discrimination task in a sound-proof booth at the phonetic lab of Utrecht
University. Participants heard one pair of stimuli per trial, and were required
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Figure 1. Pitch contours of an illustration of contrast A (T1–T4) and contrast B
(contracted T1–T4). The two contrasts differ in pitch distance and subsequently acoustic
salience and perceptual difficulty (A more salient than B). (Source from Liu & Kager,
2014)

to respond as accurately and quickly as possible by mouse clicking one of the
two buttons on the screen, labelled “same” and “different”, upon hearing each
pair. Participants selected “same” when they could not discriminate the paired
tokens. If they were able to distinguish the tokens, they chose “different” instead.
After each click, the next trial was presented. The inter-stimulus interval between
tokens in each pair was set at 500 ms. We did not choose a longer ISI as we did not
expect different results if the ISI was longer (Wayland & Guion, 2004). In addition
to the different pairs, participants’ responses to the same pairs (identical tokens as
filler trials, e.g., T1–T1) were also recorded but results were excluded from analy-
ses. Prior to the task, two auditory examples, T1–T1 and T1–T4, were played as
practice trials.

Results

A generalized linear mixed-effects (glmer) model was conducted with (binomial)
accuracy as dependent variable, language background (3-level, Dutch, DSB, Chi-
nese) and contrast (2-level, contrast A, contrast B) as fixed factors, and participant
as the random factor. Both language background (estimate=4.462, SE= 0.626,
z =7.133, df =2, p< .001) and contrast (estimate = 4.877, SE =0.625, z= 7.804, df= 1,
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p <.001) were significant predictors of the model. Posthoc pairwise comparisons
showed no difference across Dutch, DSB and Chinese participants when dis-
criminating contrast A (estimates< 0.574, SEs < .875, zs <0.736, ps> .742). When
perceiving contrast B (Figure 2), Dutch speakers’ performance was significantly
lower than their Chinese (estimate= 0.862, SE=0.333, z =2.585, p =.026) peers
whereas DSB listeners stood in the middle with no significant difference from
the other two groups (estimates <0.573, SEs < .335, zs< 1.714, ps> .200). The means
and standard deviations (SD) of the accuracy percentile across groups are listed
in Table 1. Note that participants’ accuracy scores were not compared against the
chance level as they were instructed to select “same” (the inaccurate answer in this
case) instead of randomly choosing between the two answers when they could not
discriminate the contrast.

Table 1. The means and SD of the accuracy percentile across groups

Group Number Mean Accuracy SD

Contrast A Dutch 24 98.44% 4.22%

DSB 24 96.88% 6.65%

Chinese 24 98.44% 5.61%

Contrast B Dutch 24 41.15% 24.02%

DSB 24 53.65% 29.60%

Chinese 24 59.90% 18.05%

Figure 2. Mean accuracy percentile of contrast B in the discrimination task (Error bar:
±1SE)
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Discussion

Participants from all language backgrounds exhibited ceiling performance with
contrast A, in line with previous studies across ages from infancy (Liu & Kager,
2014, 2016) to adulthood (Huang & Johnson, 2011). This is probably due to the
intrinsic acoustic properties of the contrast, frequently referred to as acoustic
salience (Yeung, Chen & Werker, 2013; Liu & Kager, 2015; Liu, Chen & Kager,
2017). When facing contrast B, a non-native pitch contrast with lower acoustic
salience than contrast A, Chinese participants outperformed their Dutch peers
and DSB listeners stood in the middle in between the other two groups, reflecting
differences in perceptual sensitivity.

Experiment 2. Music perception

Instrument

The Montreal Battery of Evaluation of Amusia (MBEA, Peretz et al., 2003) was
employed to measure participants’ music perception. The task consisted of six
tests: contour, scale, interval, rhythm, metrics/meter and memory. The first three
tests targeted listeners’ melodic/pitch organization of music, where listeners were
required to identify the melodic contour and the tonal functions of the successive
pitches. The contour test measured listeners’ sensitivity to pitch direction, the
scale test, their tonal knowledge, and the interval test, their sensitivity to pitch
height. This was followed by two tests assessing listeners’ temporal organization
of music, representing the metric organization and rhythmic structure of the suc-
cessive durations. The rhythm test examined listeners’ sensitivity to tendencies
of temporal proximity without regard to periodicity, whereas the meter test mea-
sured their ability to extract underlying temporal regularities or beats. In other
words, the three melodic components measured listeners’ discrimination of
changes in the auditory musical input and the two temporal contents examined
their sensitivity to when a musical event occurred. The last test, memory, assessed
listeners’ music memory capacity.

Each test contained 30–31 questions. In the first five tests of the MBEA, par-
ticipants were required to make binary (same/different) judgments on two musi-
cal phrases of which the second may or may not involve a musical violation. The
last test was a memory test in which participants made binary (yes/no) judgments
whether a musical phrase was played in the preceding tests.
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Procedure

Participants finished the MBEA in a sound-proof booth at the phonetic lab of
Utrecht University. Optional breaks were provided in-between every two tests.
Most of the participants completed the test in 40 to 60 minutes.

Results

A Linear Mixed-effects Model (LMM) analysis was conducted with participants
as the random factor, test (6-level repeated, Contour, Scale, Interval, Rhythm,
Meter, Memory), language background (3-level, Dutch, DSB, Chinese), and their
interaction as fixed factors, and mean accuracy as the dependent variable. Partic-
ipants’ background (F(2, 72) =3.342, p =.041), test (F(5, 360) =19.631, p< .001) and
the interaction of language background and test (F(10, 360) =2.408, p =.009) all
significantly predicted performances. Bonferroni corrected pairwise comparisons
showed no difference across Dutch, DSB and Chinese participants in Rhythm,
Meter or Memory tests, or between DSB and Chinese participants in the other
three tests (ps > .144). On the other hand, Dutch speakers’ scores were significantly
or marginally lower than the other two groups in Contour (p DSB =.063, p

Chinese = .055), Scale (p DSB = .022, p Chinese =.010), and Interval (p DSB = .071, p

Chinese = .007) tests.

Figure 3. Mean accuracy percentile of the six tests in the MBEA test for Dutch (purple),
DSB (green) and Chinese (black) listeners (Error bar: ±1SE)
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Discussion

The Chinese and DSB groups showed equal performances in the Contour, the
Scale, and the Interval tasks, outperforming Dutch participants. Crucially, these
three tasks involve pitch perception and discrimination. Tone language (e.g., Chi-
nese) listeners have been shown to perform better at music perception than non-
tone (e.g., Dutch) language listeners (Chen et al., 2016). A cross-domain transfer/
facilitation effect from linguistic to musical pitch existed for tone language listen-
ers in which word-level pitch differentiate meanings. The finding that DSB listen-
ers outperformed their Dutch peers in pitch-related musical tests was novel, in
line with the recent study showing a bilingual advantage in infancy when perceiv-
ing violin tunes (Liu & Kager, 2017b). We hypothesize that bilingual advantages
within (Hopp, Vogelbacher, Kieseier & Thoma, 2019) and beyond linguistic fields
(Liu & Weidemann, 2017) extend to their sensitivity to acoustic cues.

Experiment 3. Executive function

Instrument and procedure

Six tests were conducted targeting participants’ executive function and specifically
inhibition and switching abilities: Stroop tests (colour, English, native language);
Trail Making tests (number, number-letter) and Digit Symbol Substitution test.
Proper instructions were given to the participants prior to each test with details
listed below.

Stroop tests
Widely used to test the executive control and conflict resolution differences across
ages (McDowd & Shaw, 2000; Bialystok, 2009), the Stroop test effects demon-
strate reaction time interference facing incongruent information between the
name of a colour and the colour it is printed on (Stroop, 1935). A mismatch
between the two (i.e., the word “blue” printed in red ink instead of blue ink)
results in longer reaction time and more errors.

Three variations of the Stroop tests were adopted in the current study. In
all variations, three types of ink colours (red, green, and blue) were involved.
In the Stroop Colour test, participants were required to name the ink-colour on
“XXXXX” marker with no word meaning. In the Stroop English test, participants
named the ink-colour of the words (“red”, “green”, and “blue”) while ignoring the
word meaning. English was chosen since this single orthography was available for
all groups of listeners. The settings of the Stroop Native test was similar to the

320 Liquan Liu, Ao Chen, and René Kager



Stroop English test except that the printed words become Dutch (“rood”, “groen”,
and “blauw”) for Dutch and DSB speakers and Chinese characters (“红”, “绿”,
and “蓝”) for the Chinese group. The number of correctly named colours within
45 seconds was measured for each test as the dependent variable. The higher the
number of correct responses a participant had in the Stroop tests, the better exec-
utive function she was assumed to have.

Trail making tests
The Trail Making tests have been used in executive function assessments (Arnett
& Labovitz, 1995; Shunk, Davis & Dean, 2006) measuring participants’ flexibility
of thinking on visual-motor sequencing. In each test, participants were required
to connect 25 consecutive targets in sequential order on a sheet of paper. In the
Number Trail Making test, the targets were all numbers from 1 to 25 (Figure 3).
In the Number-letter Trail Making test, the order was instructed as switching
between numbers and letters (1-A-2-B-……-L-13; Figure 4). Participants were
instructed to complete the test as fast as possible while maintaining accuracy.
Errors were corrected immediately before moving on to the next target and were
thus reflected in the completion time. While the Number Trail Making test exam-
ined participants’ cognitive processing speed, the Number-letter Trail Making test
targeted executive functioning (Tombaugh, 2004; Bowie & Harvey, 2006). The
lower the completion time, the faster her response was, and the better executive
function she had. Participants’ times (in seconds) taken to complete the two tests
were used as the dependent variables.

Figures 4 & 5 Example illustrations of the number Trail Making test (left) and the
Number-letter Trail Making Test (right)
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Digit Symbol Substitution Test
The Digit Symbol Substitution test has been adopted in the Wechsler Adult Intel-
ligence Scale (Kaufman, Flanagan, Alfonso & Mascolo, 2006) and used to test par-
ticipants’ neuropsychological conditions (Lezak, Howieson & Loring, 2004). The
test used in the current study consisted of nine digit-symbol pairs (Figure 5) fol-
lowed by a list of digits. Participants were required to write down the correspond-
ing symbols as fast as possible within 90 seconds. The number of correct symbols
written was measured as the dependent variable. The higher the number of sym-
bols the participant wrote down, the better her response was, and the better exec-
utive function she had.

Figure 6. Nine digit-symbol pairs used in the Digit Symbol Substitution test

Results

Stroop tests
An LMM analysis was conducted with participants as the random factor, task
(3-level repeated, Colour, English, Native), language background (3-level, Dutch,
DSB, Chinese), and their interaction as fixed factors, and number of correct
responses as the dependent variable. Participants’ background did not predict
participants’ scores (F(2, 72)= 0.155, p= .856) while Stroop (F(2, 144)= 180.451,
p <.001) and the interaction of language background and the task
(F(4, 144)= 16.152, p< .001) significantly predicted participants’ scores. Bonferroni
corrected pairwise comparisons showed no difference across Dutch, DSB and
Chinese participants in the Colour task (ps > .05), a marginal advantage for Chi-
nese participants in the English task over DSB (p= .054), and a weak performance
was observed for Chinese participants compared to the other two groups
(ps < .048) in the Native task (Figure 6). No difference was observed between
Dutch and DSB groups across tasks (ps > .099). Cross-test correlation showed that
participants’ results of each test were always correlated with one another across
each language condition (rs > .667, ps < .001, N =24).

Trail making tests
An LMM analysis was conducted with participants as the random factor, task
(2-level repeated, Number, Number-letter), language background (3-level, Dutch,

322 Liquan Liu, Ao Chen, and René Kager



Figure 7. Mean number of correct responses within 60 seconds in the three Stroop tests
(Error bar: ±1SE). The longer the bar, the better the performance

DSB, Chinese), and their interaction as fixed factors, and completion time as
the dependent variable. Participants’ background did not predict performance
(F(2, 72)= 1.714, p= .187) while task (F(1, 72)= 94.320, p< .001) and the interaction
of language background and the task (F(2, 72) =4.663, p= .012) significantly pre-
dicted participants’ scores. Bonferroni corrected pairwise comparisons showed
no difference across Dutch, DSB and Chinese participants in the Number task
(ps > .05), whereas a weak performance was observed for Chinese participants
compared to the other two groups (ps < .044) in the Number-letter task (Figure 7).
Cross-test correlation revealed that participants’ results of the two tests were cor-
related in each group (rs >.549, N =24 ps < .006).

Digit symbol substitution test
An LMM analysis was conducted with participants as the random factor, language
background (3-level, Dutch, DSB, Chinese) as the fixed factor, and number of
correct responses as the dependent variable. Although participants’ background
predicted participants’ scores (F(2, 72) =3.139, p =.049), Bonferroni corrected
pairwise comparisons showed no difference across language backgrounds
(Dutch-DSB: p> .999, Dutch-Chinese: p =.093, DSB-Chinese: p =.108, Figure 8).
Results indicated a trend for Chinese over Dutch and DSB listeners, although the
differences were small.
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Figure 8. Mean completion time in seconds for the two Trail Making tests (Error bar:
±1SE). The shorter the bar, the better the performance

Figure 9. Mean number of correct responses within 90 seconds in the Digit Symbol
Substitution Test (Error bar: ±1SE)
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Discussion

Three sets of experiments targeting participant executive function presented two
main trends. First, there was no robust differences in the majority of tests across
three groups of participants. Second, Chinese participants demonstrated a disad-
vantage in the Stroop Native test and the Trail-marking number-letter test. We
discuss these two trends separately.

Our first trend indicates no evidence supporting a bilingual advantage in
executive function. Although participants were young adults, data did not seem to
suggest they achieved their ceiling performance. Relating to the debate regarding
cognitive benefits of bilingualism (Bialystok & DePape, 2009; De Bruin, Treccani
& Della Sala, 2014; Von Bastian, Souza & Gade, 2016), our results conform to
studies and meta-analyses on executive function-related tasks all reporting no
bilingual advantage in children (Dick et al., 2019; Duñabeitia et al., 2014), young
adults (Costa, Hernández, Costa-Faidella & Sebastián-Gallés, 2009; Donnelly
et al., 2015), old adults (Lukasik et al., 2018) or across ages (Lehtonen et al., 2018;
Paap et al., 2015) and differ from others reporting a bilingual advantage in cogni-
tive abilities (Bak, Nissan, Allerhand & Deary, 2014; Vega-Mendoza, West, Sorace
& Bak, 2015). However, our data do not reject the possibility that the lack of evi-
dence is related to participants’ age, as young adult samples have consistently
not shown the monolingual versus bilingual differences in executive function
(Antoniou, 2019; Bialystok, 2017; Valian, 2015).

Secondly, the performances of Chinese participants may reveal some degree
of cognitive interference of language processing. They were affected when words
were presented in their native language and in English. Such interference does
not appear to be equal in magnitude across participants: Dutch and DSB par-
ticipants seemed less affected than their Chinese peers. The overall finding may
be attributed to different cognitive demands in the processing of different ortho-
graphic systems (Wang, Perfetti & Liu, 2005): the processing of logograms being
qualitatively different from words in the alphabetic script. That is, the process-
ing of Chinese characters may be more “automatic” and therefore requires more
cognitive effort to inhibit., Alternatively, processing logographs may be more
effortful and therefore require higher cognitive resources, which would explain
why Mandarin speakers show low levels of performance in the native version.
In another test, Number-letter Trail Making, Chinese participants required a
longer time to process the number-letter alteration compared to their Dutch and
DSB peers, whereas everyone performed the same in the number-only condi-
tion. While the familiarity with the order of numbers (1–2-3–4) may stay equal
across participants, users speaking a non-alphabetic native language may have
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additional processing cost to recall the order of letters (A-B-C-D) especially when
numbers were inserted.

Cross-task correlations

The correlations across linguistic, cognitive and musical pitch perception tasks
were calculated. No correlation was observed between participants’ overall execu-
tive function performances and their linguistic and musical perception (ps> .05).
Neither was there significant correlation between contrast A and music task
results (ps > .05) probably due to participants’ ceiling performance in the former.
Nevertheless, a strong correlation was observed between contrast B and music
task results, rs >.276, N =72, ps < .020 (Table 2). Splitting the data by language
background and looking into the relationship between the linguistic contrast and
individual musical tasks (Table 3), Dutch participants showed the highest num-
ber of significant correlation in music tasks (Contour, Scale, Interval and Mem-
ory, ps < .018), followed by DSB (Interval and Memory, p <.022) and then Chinese
participants (Rhythm, p =.018). Note that Contour, Scale, and Interval tasks tar-
geted one’s sensitivity to musical pitch. The interplay between linguistic and musi-
cal pitch perception appeared to be the strongest among Dutch and the weakest
among Chinese participants. Similar to previous findings, DSB listeners stood in
the middle between the other two groups with a moderate correlation between
speech and music perception. The lack of correlation between speech and music
perception among Chinese and DSB listeners is likely to be due to participants’
overall good performances (Figures 10–12). Compared to Dutch and DSB listen-
ers, the correlation between Chinese listeners’ linguistic pitch and musical rhythm
perception may stem from the fundamental rhythmic difference of their native
languages. Chinese is a syllable-timed language whereas Dutch is stress-timed
(Abercrombie, 1967; Mok, 2009). Twenty participants (except for two French, one
Spanish and one Tamil) from the DSB group speak two stress-timed languages.

General discussion

This study examined whether listeners’ lexical tone perception, musical pitch
discrimination and cognitive abilities differ as a function of different language
experiences, and explored the interplay between listeners’ performances. Results
are expected to lead to our advanced understanding of whether bilingual advan-
tages in speech and music perception observed in infancy extend to adulthood,
whether the lexical tone-musical pitch correlation observed among non-tone
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Table 2. Correlation between multiple tasks performed by Dutch listeners

ContrastB Contour Scale Interval Rhythm Meter Memory Stroop Trial DSS

ContrastA r =.19 r =.06 r =.50* r= .29 r= −.06 r= .24 r =−.18 r =−.03 r= −.11   r= .11

ContrastB r =.48* r =.49* r= .58**   r =.31 r= .39   r= .51* r =−.27   r =.26 r =−.35

Contour r =.60** r= .73**   r =.67** r= .25   r= .49*   r= .07 r= −.10 r =−.30

Scale r= .61**   r =.57** r= .60**   r= .29 r =−.25   r =.05 r =−.01

Interval   r =.73** r= .08   r= .33   r= .07   r =.19 r =−.35

Rhythm r= .12   r= .42* r =−.11   r =.07 r =−.13

Meter   r= .45* r =−.39   r =.01   r= .26

Memory r =−.33 r= −.02 r =−.12

Stroop r= −.29   r= .05

Trial r =−.63**

* Significance at .05 or lower (two-tailed) ** Significance at .01 or lower (two-tailed)

Table 3. Correlation between multiple tasks performed by DSB listeners

ContrastB Contour Scale Interval Rhythm Meter Memory Stroop Trial DSS

ContrastA r =.54** r =.28 r =.19 r= .25 r= .15 r= .24 r =.37 r =−.18 r= −.28 r =−.01

ContrastB r =.39 r =.18 r= .49* r= .34 r= .38 r =.47* r =−.24   r =.17 r =−.24

Contour r =.82** r= .74** r= .47* r= .47* r =.64** r =−.36   r =.11 r =−.20

Scale r= .63** r= .26 r= .30 r =.53** r =−.18   r =.15 r =−.20

Interval r= .70** r= .47* r =.69** r =−.20   r =.16 r =−.04

Rhythm r= .63** r =.55**   r= .09   r =.21 r =−.28

Meter r =.42* r =−.04 r= −.01 r =−.30

Memory r =−.27   r =.16 r =−.15

Stroop r= −.16 r =−.04

Trial r =−.57**

* Significance at .05 or lower (two-tailed) ** Significance at .01 or lower (two-tailed)

language listeners (Chen, Liu & Kager, 2015) may extend to simultaneous bilin-
guals, and to what extent these listeners’ perception may be influenced by cogni-
tive factors.

This study examined linguistic pitch, music perception and executive func-
tion of listeners from three types of language backgrounds. Results demonstrated
that: First, while all participants were able to discriminate between salient lin-
guistic pitch contours, Chinese and outperformed their Dutch peers when the
acoustic salience of the contrast was diminished, and DSB listeners’ performance
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Table 4. Correlation between multiple tasks performed by Chinese listeners

ContrastB Contour Scale Interval Rhythm Meter Memory Stroop Trial DSS

ContrastA r =.50* r =.07 r= −.15 r =.14 r =.55** r =.12 r =.14 r =.38 r =−.23   r =.04

ContrastB r =.19 r= −.12 r =.05 r =.48* r =.08 r =.04 r =.11 r =−.10 r= −.05

Contour   r= .71** r =.75** r =.50* r =.35 r =.33 r =.19   r= .06 r= −.01

Scale r =.82** r =.17 r =.24 r =.66** r =.11   r= .11   r =.14

Interval r =.32 r =.37 r =.71** r =.23 r =−.19   r =.18

Rhythm r =.38 r =.13 r =.26 r =−.06   r =.02

Meter r =.31 r =.19 r =−.17 r= −.29

Memory r =.31 r =−.05   r =.20

Stroop   r= .01 r= −.07

Trial r= −.35

* Significance at .05 or lower (two-tailed) ** Significance at .01 or lower (two-tailed)

Figure 10. Correlation between the lexical tone (ContrastB) discrimination tasks and the
MBEA pitch tasks for the Dutch listeners. Linear R 2 = 0.36

stood in the middle. Second, Chinese and DSB listeners did not differ in their
MBEA performance and outperformed Dutch listeners once again in pitch-
related musical tasks. Third, there was no evidence of overall executive function
differences across participants, nor did their executive function interact with
pitch perception. Last but not least, the correlation between participants’ linguis-
tic and musical pitch sensitivity was the most evident among Dutch listeners,
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Figure 11. Correlation between the lexical tone (ContrastB) discrimination tasks and the
MBEA pitch tasks for the DSB listeners. Linear R 2 = 0.16

Figure 12. Correlation between the lexical tone (ContrastB) discrimination tasks and the
MBEA pitch tasks for the Chinese listeners. Linear R 2 = 0.01

followed by DSB and Chinese listeners who demonstrated limited and no cross-
domain interplay, respectively.
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In line with previous findings illustrating the positive effect of tone language
exposure on lexical and musical pitch perception (Bidelman et al., 2011a;
Pfordresher & Brown, 2009), Chinese participants’ linguistic pitch perceptual
advantage is as expected, because it involved a native tone contrast. Since the dif-
ferences between DSB and Dutch listeners did not reach significance, the lim-
ited enhancement trend in the DSB group needs to be interpreted with caution.
Previous studies have demonstrated that just like music experience (Thompson,
Schellenberg & Husain, 2004), life-long exposure to a bilingual environment may
improve the subcortical encoding of sounds including those beyond native lan-
guages (Krizman et al., 2012). In fact, bilinguals’ enhanced neural and acoustic
sensitivity to non-native speech contrasts is present in the first year of life
(Antoniou et al., 2015; Liu & Kager, 2016; Petitto et al., 2012; Ressel et al., 2012).
It is not surprising that such a benefit can be carried over to adulthood given lis-
teners’ cumulative language exposure. Although the DSB listeners in the current
experiment had no experience in a specific tone or pitch-accent language, they
nevertheless, typically experience more prosodic variation (e.g., intonation) and
develop refined sound categories from two languages (Kuhl et al., 2008; Liu &
Kager, 2015). This richer prosodic experience may subsequently facilitate their
perception of other suprasegmental features. Following the heightened acoustic
sensitivity hypothesis (Liu, 2014; Liu & Kager, 2016), we argue that simultaneous
bilingual experience sharpens listeners’ overall sensitivity to speech sounds. More
importantly, such sharpening is not restricted to perceiving the phonetic details
which bilinguals are specifically exposed in their native languages, but extending
to inexperienced acoustic features and other domains, evidenced by the current
results showing non-tone language bilinguals’ enhanced performances in lexical
tones and musical pitch. Infant research has reported bilingual advantages in
speech perception involving linguistic pitch (Hay, Graf Estes, Wang & Saffran,
2015; Singh, 2017; Singh, Fu, Tay & Golinkoff, 2017). Whether or not listeners
assimilate non-native linguistic pitch to native intonation is an issue of debate.
Some studies find evidence of perceptual assimilation (Chen & Kager, 2016; Singh
& Chee, 2016) when testing (adult and child) non-tone language listeners’ per-
ception of tonal contrasts that resemble native intonation (e.g., rising vs. falling
tone, resembling interrogative and narrative intonation). Others, however, report
results showing no intonation facilitation effect as such (Tsao, 2017). Another
related issue is whether the observed bilingual advantage can be more specifically
attributed, for instance, to similarities/differences in speech prosody (word stress,
intonation, rhythmicity) between the two native languages. Though scarce, pre-
vious studies have reported enhanced sensitivity in stress and rhythm processing
for bilinguals from infancy (Molnar et al., 2014) to adulthood (Abboub, Bijeljac-
Babic, Serres & Nazzi, 2015; Molnar, Carreiras & Gervain, 2016; also see
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Roncaglia-Denissen, Roor, Chen & Sadakata, 2016 for similar enhancement
effects in L2A). We leave these possibilities open for future studies.

In addition, differences in music perception have been observed between
late and simultaneous bilingual Dutch listeners, the latter being more accurate
in pitch-related tasks than the former. As enhanced music sensitivity surfaces in
bilingual infants of 9 months (Liu & Kager, 2017b), bilingual enhanced acoustic
sensitivity may be an age- and domain-general effect. The magnitude of bilingual’s
heightened acoustic sensitivity may, however, depend on variables such as their
specific auditory experience and input acoustic properties. The reason why such
advantages surface in musical pitch perception could be that pitch is a relatively
salient feature (Yeung et al., 2013), as very young infants show sensitivity to word-
level pitch variations (Nazzi et al., 1998) and melodic consonance (Trainor, Tsang
& Cheung, 2002). It has been demonstrated that both linguistic and musical
expertise benefit music perception: Chinese listeners and non-tone language
musicians have stronger brainstem representation of the defining pitches of musi-
cal sequences than non-musicians (Bidelman, Gandour & Krishna, 2011b). Our
findings suggest that a bilingual environment may enhance listeners’ general audi-
tory perception, possibly resulting in the enhanced subcortical encoding of
incoming acoustics (Krizman et al., 2012).

Our initial hypothesis that the nature of bilingual enhanced sensitivity can be
explained from cognitive perspectives was not supported. The current study did
not find any executive function advantage or correlation between language/music
perception and executive function among DSB listeners. In addition to the heated
debate on the magnitude of bilingual cognitive advantage (e.g., Bialystok, 2017;
Paap et al., 2015), the lack of correlation may also be attributed to the specific tasks
conducted in the current study: Although the Stroop task requires the produc-
tion of three colour words, none of the current executive function tasks entails
acoustic perception. Participants’ executive function ability may be more relevant
to tasks involving high-level cognitive function and less relevant to the auditory
perceptual tasks examining lower-level acoustic mechanisms. We leave the execu-
tive function debate and its function open for future research.

Finally, the strength of the correlation between speech and music perception
differed significantly across listeners from various backgrounds in this study.
Dutch listeners’ speech and music perception were highly linked, replicating the
previous study (Chen et al., 2016). Such correlations indicate the involvement of
shared or parallel mechanisms in listeners’ linguistic pitch and music percep-
tion (Hallé, Chang & Best, 2004), suggesting cross-domain perceptual transfer
(Bialystok & Depape, 2009; Bidelman et al., 2011a; Moreno, 2009). Comparatively
speaking, DSB listeners’ strength of correlation was much less robust (well asso-
ciated) than that in Dutch listeners, and lexical tone and music perception were
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hardly correlated in Chinese listeners, indicating the influence of native phonemic
categories. Nevertheless, the latter did demonstrate the highest sensitivity in lin-
guistic pitch and music among the three groups, illustrating cross-domain ben-
efits stemming from native tone language exposure. In line with the current
finding, Cooper and Wang (2012) found that English (non-tone language) but
not Thai (tone language) listeners’ tone identification and musical aptitude scores
were significantly correlated with their successful learning of novel tonal words
in Cantonese. It could be that once the lexical tones are fully acquired, they are/
become isolated from other non-lexical pitch variations, leading to no correlation
between lexical tone and musical pitch processing. To conclude, the overall study
contributes to the existing literature by demonstrating a bilingual advantage in
pitch perception across domains of language and music.
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Appendix I. Bilingual language background (apart from Dutch)

In this table, the other language spoken by the Dutch simultaneous bilingual participants were
listed.

Language Number of participants

Arabic  2

Danish  1

English 11

French  2

Frisian  3

German  3

Spanish  1

Tamil  1
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Appendix II. F0 value in four points of the naturally-produced stimuli

In this table, the four numbers (1–4) represent the four naturally produced contrasts (A) from
which four manipulated contrasts (B) were created in PRAAT, resulting in eight pairs in total.

Pair Contrast Starting Point Interpolate 1 Interpolate 2 Ending Point

1 A 288.30 289.00 289.00 290.00

B 302.93 294.71 262.43 252.97

B 324.87 303.29 222.57 197.43

A 339.50 309.00 196.00 160.40

2 A 275.50 277.63 279.77 281.90

B 291.66 287.25 255.64 247.28

B 315.91 301.68 221.93 195.35

A 332.08 311.30 198.80 160.73

3 A 278.80 276.67 274.53 272.39

B 307.29 292.91 243.83 238.14

B 350.04 317.26 197.78 186.75

A 378.54 333.49 167.08 152.50

4 A 272.50 272.83 273.15 273.47

B 303.05 284.98 245.03 240.13

B 348.88 303.21 202.85 190.13

A 379.43 315.37 174.73 156.79

340 Liquan Liu, Ao Chen, and René Kager



Appendix III. Scatter-plot across Experiments

Note: There are 24 participants per group. The number of dots may be less than 24 due to the
overlap if participants share same scores.

Experiment 1 Language perception, including two contrasts
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Experiment 2 Executive function, including three Stroop tasks, two Trail Making tasks,
and one Digital Symbol Substitution task
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Experiment 3 Music perception, including six tasks: contour, scale, interval, rhythm, meter,
memory.
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