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In this paper, we explore interaction history as a particular source of pres-
sure for achieving emergent compositional communication in multi-agent
systems. We propose a training regime implementing template transfer, the
idea of carrying over learned biases across contexts. In the presented
method, a sender-receiver dyad is first trained with a disentangled pair of
objectives, and then the receiver is transferred to train a new sender with a
standard objective. Unlike other methods (e.g. the obverter algorithm), the
template transfer approach does not require imposing inductive biases on
the architecture of the agents. We experimentally show the emergence of
compositional communication using topographical similarity, zero-shot
generalization and context-independence as evaluation metrics. The pre-
sented approach is connected to an important line of work in semiotics and
developmental psycholinguistics: it supports a conjecture that composi-
tional communication is scaffolded on simpler communication protocols.
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1. Introduction

Language-like communication protocols can emerge in games that require the
agents to share information and coordinate behaviour (Foerster et al., 2016;
Lazaridou et al., 2016; Jaques et al., 2018; Chaabouni et al., 2020; Kharitonov
and Baroni, 2020). One important feature of human languages is compositional-
ity – there are complex signals constructed through the combination of signals.
Compositionality is considered a key feature of general intelligence because it
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facilitates generalization (adaptability to novel situations) and productivity (an
infinite number of meanings can be created using a finite set of primitives) (Lake
et al., 2016). However, recent work on emergent languages in artificial intelligence
shows that under certain circumstances compositionality is hard to achieve and
requires strong inductive biases to be imposed on the agents (Kottur et al., 2017).

We recognize that the evolutionary pressure for compositional communica-
tion may come from multiple sources: inductive biases, structure of the environ-
ment, social situation, learnability, etc. In this paper we isolate and model one
particular source of such pressure connected with the history of interactions in
a changing context. We demonstrate that communication protocols exhibiting
compositionality can emerge via adaptation of pre-existing, simpler non-
compositional protocols to a new context. This procedure is an instance of tem-
plate transfer (Barrett and Skyrms, 2017). Our model implements the idea of
template transfer by sharing agents across signaling games of varying complexity.
We decompose learning compositional communication into three phases: (i)
learning a visual classifier, (ii) learning non-compositional communication pro-
tocols, and (iii) learning a compositional communication protocol. This decom-
position closely follows distinctions established in semiotics (the hierarchy of (i)
icons, (ii) indices, and (iii) symbols postulated by Peirce (1998), see Section 5)
and is more plausible in the light of human language development than other
approaches. Crucially, the biases learned in simple games in phase (ii) are suffi-
cient to incentivize a compositional communication protocol to emerge in phase
(iii). The incentive for compositional communication does not come from their
innate inductive biases but from the history of their involvement in different
games. We compare the template transfer approach with other method of achiev-
ing compositionality – the obverter algorithm (Batali, 1998; Choi et al., 2018)–on
three different metrics: zero-shot generalization, context-independence and topo-
graphical similarity. The results demonstrate that the ability to communicate com-
positionality can emerge in a model less cognitively demanding than the obverter
approach.

2. Related work

In this paper, we assume a broadly pragmatic or game-theoretic approach to lan-
guage evolution: communication emerges as a tool for guiding joint action or
for enabling coordination in a multi-agent system trained with a joint objective
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(Raczaszek-Leonardi et al., 2018).1 Lewis signaling games (Lewis, 1969; Skyrms,
2010) are a popular game-theoretic model of communication. A Lewis signaling
games consists of a set of states x ∊ X, a set of available actions y ∊ Y, a set of avail-
able messages m∈M, and a sender s (sending a message m upon observing a state
x), and receiver r (taking an action y upon receiving a message m), and finally a
loss function 𝓛 (x, y) assigning each state-action pair a reward or penalty. With a
particular choice of 𝓛, communication can be modeled as having the sender and
the receiver agreeing upon a communication protocol that allows the receiver to
take advantage of the information about the state x available (only) to the sender
to take the action y minimizing the loss function 𝓛 (x, y).

Computational models of Lewis signaling games traditionally relied on either
simple reinforcement learning (e.g. Roth-Erev model; Skyrms (2010)) or evolu-
tionary optimization (Cangelosi, 2001; Grouchy et al., 2016) for learning the para-
meters θ and Ψ of the policies for the sender sθ and the receiver rΨ. With the rise
of deep learning (Goodfellow et al., 2016), deep neural networks started being
used to implement policies of the agents with parameters optimized via gradi-
ent descent implemented using the backpropagation algorithm (Rumelhart et al.,
1986). In a typical setting, learning boils down to descending along the gradient
▽θ,Ψ 𝓛 (rΨ(sθ(x),y) for a loss function 𝓛, a state x and an action y. The introduc-
tion of more powerful models (in terms of capacity) and more efficient training
regimes (in terms of convergence time) contributed to the emergence of quali-
tatively novel phenomena (e.g. counter-factual reasoning (Jaques et al., 2018)) as
well as enabled using more psychologically realistic settings (e.g. presenting the
agents with raw visual inputs as opposed to pre-processed, discrete representa-
tions of stimuli (Lazaridou et al., 2018; Bouchacourt and Baroni, 2018).

Inductive biases for compositional communication

Kottur et al. (2017) argue that the emergence of compositionality requires strong
inductive biases to be imposed on communicating agents. In a guessing game with
inputs being objects characterized by color and shape, agents implemented by a
vanilla architecture (i.e. without additional constrains motivated by composition-
ality) will most likely end up developing an information-theoretically optimal yet
non-compositional communication protocol – a hash function for the objects –
that will show poor generalization to novel combinations of colors and shapes
(Kottur et al., 2017). One recurring approach to enforce compositionality is plac-

1. There are also more syntactically or semantically oriented approaches, which focus more on
the development of lexicons and grammars in single agents. For a broader review, see (Gong
et al., 2014).
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ing pressure on agents to use symbols consistently across varying contexts. To
that end, Kottur et al. (2017) and Das et al. (2017) reset the memory of an agent
between producing or receiving subsequent parts of a message, which helps to
obtain a consistent symbol grounding (i.e. each symbol is associated with a shape
irrespective of color or with color irrespective of shape). Resetting the memory of
an agent in the middle of receiving or producing a message can be argued to be an
ad hoc manipulation, however, which is of limited interest to researchers focused
on uncovering biologically plausible mechanisms of compositionality.

Obverter approach

A more psychologically plausible approach is explored by Choi et al. (2018) and
Bogin et al. (2018), who take inspiration from the obverter algorithm (Oliphant
and Batali, 1997; Batali, 1998). The obverter (from the Latin obverto, to turn
towards) algorithm is based on the assumption that an agent can use its own
responses to messages to predict other agent’s responses, and thus can iteratively
compose its messages to maximize the probability of the desired response. In
a typical game, two agents aξ and ak (with policies parametrized by ξ and k)
exchange the roles of the sender and the receiver. If an agent is the receiver
(aξ = rξ), it behaves as in the object naming game. If an agent is the sender (aξ = sξ),
it sends message that would have produced the optimal response (to the best of
aξ ’s knowledge) if aξ had received such a message as a receiver. More formally, aξ
sends a message m =arg maxm’ rξ(yc|m′), assuming a correct action yc is known or
can be predicted by aξ. This can be interpreted as agents possessing a theory of
mind (Bruner, 1981; Tomasello et al., 2005) or a model for predicting the response
of the other agent rK(y|m) based on own their policy rξ(y|m).

A limitation of the obverter is that it makes strong assumptions about the
agents and task: to be able to use themselves as models of others, the agents should
share a similar architecture2 and the task must be symmetric (the agents must be
able to exchange their roles). This excludes games with functional specialization
of agents.

Another problem is the computational complexity of the decoding procedure.
Even assuming greedy decoding (i.e. that the sender will compose a message by
progressively choosing the next symbol mt maximizing rξ(yc|m1:t)), producing a

2. While Batali (1998) and Choi et al. (2018) used the same architecture of the agents, one can
imagine relaxing this assumption and only using similar architecture. However, it no longer
guarantees that the sender’s model class (the family of probability distributions over symbol
sequences it can represent) is rich enough to represent the distribution of the receiver.
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message requires O(|V|T) queries to the model of the receiver (where |V| is vocab-
ulary size and T is maximum message length).

Population-based training

A different family of approaches tries to incetivize compositionality by training
entire populations of senders and receivers and creating a pressure for learnability
of the communication protocol for new agents. This approach was pioneered by
the iterated learning model, which assumed that agents acquire a communica-
tion protocol by being (implicitly or explicitly) taught by the agents from previous
generations (Kirby, 2001). The cultural transmission is imperfect, which creates a
bias towards protocols that are both expressive and easy to teach (Brighton, 2002).
Iterated learning was found to lead to compositionality both in computational
experiments (Brighton, 2002) as well as in experiments with human subjects
(Kirby et al., 2008). In the machine learning literature, generational transmission
as a mechanism for inducing compositionality was explored by Li and Bowling
(2019) and Cogswell et al. (2019), who simulate the arrival of new language users
by periodically resetting weights of some agents in the population. Their exper-
iments corroborated the effect of increased compositionality and found it to
be complementary with other factors that encourage compositionality. Injecting
noise into the messages produces a similar increase in compositionality (Kuciński
et al., 2021).

Multi-task training

Yet another approach, most similar in spirit to ours, was introduced by De Beule
and Bergen (2006). In this work, a population of agents plays a guessing game
in a world populated by events involving agents and patients. There are Ne event
predicates (e.g. kicked) and Np person predicates (e.g. Mary), giving rise to 2NpNe
structured topics and Np + Ne atomic topics. The fraction between the number
of structured topics presented to the agents and the number of atomic topics pre-
sented to the agents is known as task complexity. Task complexity turns out to
be a crucial parameter influencing compositionality. For an intuitive explanation,
consider the event “Mary loves Eve”. A sender who has never seen neither event
predicate love nor person predicates Mary and Eve might employ a new word to
communicate this event. However, a sender already knowing the word for Mary
might reuse it together with new words for novel elements of the event. The exper-
iments conducted by De Beule and Bergen (2006) demonstrate that the incentive
to reuse known symbols leads to the emergence of compositional communica-
tion in games with low yet non-zero task complexity, i.e. when agents commu-
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nicate mostly about atomic topics but also about structured topics. Contributing
to this line of thinking, we show how a similar effect of reusing parts of a non-
compositional communication protocol in a compositional fashion can emerge
when training with structured topics occurs after (not simultaneously to) training
with atomic topics.

Evolutionary origins of grammar

Nowak and Krakauer (1999) presented a game-theoretic model of language evo-
lution, in which they investigated how specific features of language provide fitness
advantage under certain circumstances. They suggested that simple composi-
tional (and grammatical) languages may evolve when communicating different
aspects of the world is rewarded independently (disentangled rewards). For
example, it may be evolutionary beneficial to name a type of danger (leopard),
and it would be even more beneficial to name it and specify additional circum-
stances (a stalking leopard is more dangerous than a sleeping one). At first, a sim-
ple non-compositional language which only names the type of danger may evolve,
and then it could be transformed into a compositional one conveying both the
type of danger and circumstances. This is conceptualy similar to the template
transfer approach since a) more complex language protocol relies on a simpler
one, b) structure of the compositional protocol reflects structure of the rewards
received by an agent.

Generalized signaling games

Barrett and Skyrms (2017) recently developed a theoretical framework of gen-
eralized Lewis signaling games for modeling how Lewis signaling games can be
composed and transferred to new settings to yield more powerful Lewis signal-
ing games. These generalizations can be understood in terms of ritualization: the
process of exploiting pre-existing patterns of behavior of some agent a1 by some
other agent a2 for the benefit of a2. This notion gives rise to the following classes
of generalized signaling games:

1. a cue-reading game is where a1 = sθ and a2 = rΨ, i.e. θ is approximately fixed and
the receiver takes advantage of the policy of the sender,

2. a sensory-manipulation game is where a1 =rΨ and a2 = sθ, i.e. Ψ is approxi-
mately fixed and the sender takes advantage of the policy of the receiver,

3. a (proper) signaling game is where the sender and receiver both take advan-
tage of each other’s dispositions.
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Barrett and Skyrms (2017) offer the following examples. For cue-reading, consider
cross-species signaling networks such as hornbills receiving, understanding and
exploiting alarm calls of Diana monkeys (Rainey et al., 2004). (The two species
have common predators.) For an example of sensory-manipulation, consider
mating rituals of frogs from the Physalaemus pustulosus species group. Here males
of several species of Physalaemus pustulosus exploit the sensitivity of females for
certain sounds that is evolutionary antecedent (pre-existing) and shared between
Physalaemus pustulosus species (Ryan and Rand, 1993).

In case when the policy of a1 evolved as a solution to a previous signaling
game go between a1 and some a0, the new signaling game g1 with a1 and a2 can be
seen as evolving out of g0. This appropriation of a policy of a1 from g0 to a new
game g1 is known as template transfer. The policy of a2 can then be seen as a trans-
lating the inputs from the g1 to inputs from g0 or emulating g0. This is why the
transferred policy of a1 might be successful in a context g1 other than the one the
policy initially evolved for (i.e. g0).

A related phenomenon, modular composition, occurs when the output (i.e.
receiver’s action) of one game g0 is the (sender’s) input to a new game g1, thus
forming a composite game. For instance, an initial game g0 with agents s0, r0 can
be interpreted as itself being a policy of an agent s1 : x ↦ r0(s0(x)) who can then
play with a new receiver r1 thus forming a composite game g1 : x ↦ r1(r0(s0(x))).
This instance of modular composition is known as polymerization and boils down
to agents forming a signaling chain. Modular composition may also involve games
with several senders and/or receivers and networks with branched flow of mes-
sages. Barrett and Skyrms (2017) provide an example of NAND games (i.e. games
with two senders communicating with one receiver to jointly emulate a NAND
gate) being composed to form an OR game (or, by extension, emulating an arbi-
trary Boolean function).

While transferred policies and solutions to composite games could in princi-
ple have evolved from scratch, template transfer and modular composition lead
to orders of magnitude faster convergence. Moreover, they seem to implement a
general principle of modular reuse in nature. It seems that a great deal of cog-
nitive, social and semiotic phenomena can emerge through recursive modular
composition or iterative template transfer from simpler to more complex games.
This includes logical inference (Barrett and Skyrms, 2017), knowledge sharing in
a community (Barrett et al., 2019) and functional specialization of agents (Barrett
et al., 2018).

218 Tomasz Korbak et al.



Motivation for our approach

The direction pursued in this paper is to explore an alternative, novel approach
to the emergence of compositional communication, where the history of previous
interactions can affect the emerging communication protocol, even if pressures
shaping the communication change. It can be illustrated through a story inspired
by the classic Wittgenstein’s example of stonemasons building a construction out
of stones (Wittgenstein, 1953, Paragraph 2). Stones have various shapes and col-
ors. There are four stonemasons altogether: a master and three apprentices. The
role of an apprentice is to pick a stone from a pile, name its properties, and pass
it to the master. The master takes the stone without looking, and uses it in the
construction. The master is working with apprentice A on a piece of wall which
needs to be sturdy but not pretty, and with apprentice B on a piece of decorative
wall which needs to be pretty but not sturdy. When communicating with appren-
tice A only stone shapes are important, when communicating with apprentice B
only stone colors are important. The master simultaneously learns to communi-
cate with apprentices A and B. Then, the work begins on a third piece of wall
which needs to be both sturdy and pretty. The master hires apprentice C for the
job, and they need to learn to communicate effectively. Apprentice C is initially
clueless, but the master already has certain communicational habits from work-
ing with A and B. Apprentice C picks up on those and starts using compositional
expressions for shape and color based on expressions used previously by A and B.
Compositional communication emerges even though the initial reason for disen-
tangling shape and color disappears.

Following Skyrms (2010), we will pose the problem as a naming game–a
Lewis signaling game, where the sender (apprentice from the example) sees an
object with two independent factors of variation (shape and color) and the
receiver (master from the example) must, independently, indicate both of these
factors. The objects will be presented to the sender as raw pixel data, which is
motivated by (relative) biological plausibility of this setting. The receiver is dis-
embodied in the sense that it does not receive any perceptual input, only sender’s
messages (this comes in contrast to another popular setup where the receiver is
presented a target object and a set of distractors and then has to choose the tar-
get based on the messages). There will be a pre-defined communication channel:
a fixed set of fixed-length messages composed from symbols from a fixed vocab-
ulary. There will be an implicit temporal dimensions in the model as the sender
produces the messages symbol-by-symbol and the receiver receives them symbol-
by-symbol. Both agents will be implemented as recurrent neural networks with
time-steps corresponding to subsequent symbols.
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The aim is to explore solutions to the object naming game based not on
injecting inductive biases into the architecture of the agents, but leveraging con-
straints established by the history of previous interactions in a game-theoretically
principled manner. More specifically, we will investigate whether template trans-
fer (as described above) can be employed as a way of achieving compositional
communication in an object naming game. The character of this work is proof of
concept. Relatively simple architecture of our agents, disembodied receiver and
simplicity of the stimuli guarantee that the observed effects are due to template
transfer, not other factors.

3. Method

In this section, we describe the experimental setup in more detail, derive the
specific loss functions used in experiments and present the template transfer
approach – the main contribution of the paper.

3.1 Experimental setup

3.1.1 Dataset
We conduct our experiments on a dataset consisting of 2500 images of colored
three-dimensional objects. Each image has dimension of 128 × 128 × 3 pixels.
The dataset includes images of five shapes (box, sphere, cylinder, torus, ellipsoid)
and five colors (blue, cyan, gray, green, magenta). One hundred images generated
using POV-Ray ray tracing engine,3 differing in the position of the object on a
surface, are included for each color-shape pair. An analogous dataset was previ-
ously used by Lazaridou et al. (2018); Choi et al. (2018) and Bogin et al. (2018).
We choose pairs for the test set by taking one of each figure and color, i.e. the test
set is composed of blue boxes, cyan cylinders, gray ellipsoids, green spheres and
magenta tori. Example images from the training set are shown on Figure 1.

3. The dataset was generated using code available from https://github.com/benbogin/
obverter.
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Figure 1. Examples of images from the training dataset

3.1.2 Object naming game
Object naming games are Lewis signaling games (Lewis, 1969; Skyrms, 2010)
where the loss function 𝓛 can be decomposed into a sum of two loss functions 𝓛1
and 𝓛2. In the object naming game used in the experiments, two agents, a sender
and a receiver, learn to communicate about colored geometric objects. The sender
observes an object (an RGB image) and sends a message (a sequence of discrete
symbols) to the receiver; the receiver must correctly indicate both the color and
the shape of the object. Formally, the game is stated as maximization of the fol-
lowing log likelihood:

(1)𝓛(θ, Ψ) := 𝔼x,yc,y s~D𝔼m~sθ(·|x)[–log rΨ (yc, ys|m)],

where sθ is the policy of the sender (i.e. sθ(m|x) is the probability of sending
message m when observing image x), rΨ is the policy of the receiver (i.e. rΨ(yc,
ys|m) is the probability of taking actions yc, ys after receiving message m). D is the
dataset, and a sample of the dataset consists of the following: x, an RGB repre-
sentation of the object, and labels yc and ys for the color and shape of the objects.
Parameters θ and Ψ are learnable parameters of the polices. For more details, see
Algorithm 1 and Figure 2.
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Figure 2. Object naming game

Algorithm 1 Training loop for the object naming game

1. Initialize sender sθ, receiver rΨ, and training set D
2. for x, yc, ys ∊ D do
3.    m ~ sθ (x)
4.    ŷc, ŷs = rΨ (m)
5.    𝓛= -log_likelihood(yc, ŷc) – log_likelihood(ys, ŷs)
6.    optimize(𝓛(θ, Ψ)

3.2 Architecture of the agents

General setup
Both the sender and the receiver are implemented as simple recurrent neural net-
works (Elman, 1990). The sender is equipped with a pre-trained convolutional
neural network (LeCun et al., 1998) to process visual input. After observing the
object, the sender generates a sequence of T discrete messages sampled from a
closed vocabulary of 10 symbols. The last (softmax) layers are distinct for shape
and colors, but earlier layers (including the RNNs) are shared and hence pro-
cessing of shape and color will be entangled by default. In the naming games, a
color sender and a shape sender produce messages, and the first symbol of color
sender’s message and the second symbol of shape sender’s message are concate-
nated and then passed over to the receiver. It is in this sense that the agents are
optimised simultaneously.
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All experiments reported in this paper are implemented using PyTorch
(Paszke et al., 2017) and EGG (Kharitonov et al., 2019). The code is publicly
available.4

Vision module
We pre-train a simple convolutional neural network on the training subset of our
datatset to predict colors and shapes. The network is composed of two layers of
filters (20 and 50 filters with kernel size 5×5 and stride 1), each followed by a
ReLU (rectified linear unit) activation and max pooling. The output of convo-
lutional layers is then projected into a 25-dimensional image embedding using a
fully-connected layer. During pre-training, the image embedding is passed to two
linear classifiers (for color and shape) and the whole vision module is optimized
with negative log likelihood as a loss function.

Sender
During naming games, the vision module is kept frozen (i.e. it is not updated
during training). The sender generates its messages using a single-layer recurrent
neural network (RNN) with a hidden state size of 200. The 25-dimensional image
embedding for each image is projected to 200 dimensions to initialize the hidden
state of the RNN. Let T be a fixed length of the message. Then, at each time-step
t < T, the output of the RNN is used to parameterize a Gumbel-Softmax distribu-
tion (together with a temperature t that is a trainable parameter as well). A symbol
is sampled from this distribution at each time-step t. After reaching T, the RNN
halts and the generated symbols are concatenated to form a message, which is
then passed to the receiver.

Receiver
The receiver processes a message symbol-by-symbol using a single-layer recur-
rent neural network with a hidden state size of 200. After processing the entire
sequence, the last output is passed to a two-layer neural network classifier with
two softmax outputs for color and shape.

Hyperparameters
All models are optimized using Adam (Kingma and Ba, 2014). The batch size is
always 32. During the object naming game, the sender is trained with learning rate
10−5 and receiver with learning rate 10−5.

4. The code for this paper is available at https://github.com/tomekkorbak/Interaction-history
-as-a-source-of-compositionality.
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3.3 Template transfer approach

The template transfer approach boils down to pre-training the receiver on two
simpler guessing games: a color naming game and a shape naming game. These
games are disentangled in the sense that their tasks are to correctly indicate one
aspect of the object (color or shape), as formalized by the following loss func-
tions:

(2)𝓛1(θ1, Ψ):= 𝔼(x,yc)∽D 𝔼m∽sθ1 (·|x)[−log rΨ (yc|m)],

(3)𝓛2(θ2, Ψ):= 𝔼(x,ys)∽D 𝔼m∽sθ2 (·|x)[−log rΨ (ys|m)],

where rΨ (yc|m) is the marginalization of rΨa (yc, ys|m), viz. rΨ (yc|m) := ∑ys
rΨ(yc, ys|m). Analogously, one can define rΨ (ys|m):= ∑yc rΨ (yc, ys|m). Crucially, as
far as Yc is conditionally independent from Ys given X, we have

(4)𝓛(θ, Ψ)= 𝓛1(θ, Ψ) + 𝓛2(θ, Ψ).

The loss functions 𝓛1 and 𝓛2 are optimized simultaneously (crucially with the
shared parameters Ψ of the receiver) until a desired level of accuracy is met. Then,
the second phase follows, in which the receiver is passed (via template transfer)
to the object naming game (as described in the previous paragraph) with a new
sender.

During the pre-training phase of template transfer, both sender and receiver,
as well as the vision classifier, are trained with learning rate 10−3. Message length
T =1 for each sender. To prevent distribution shift with respect to message length
between games, a random uniformly sampled symbol is prepended to s1 ’s mes-
sages and appended to s2’s messages.5 After, pre-training, during the object naming
game, T= 2 and the learning rate of the transferred receiver is decreased to 10−5.
See Figure 3 and Algorithm 2 for more details.

The communication protocol acquired in the first phase serves as a training
bias in the second phase. Informally, the new sender learns to emulate messages
sent by the two specialized senders of the previous phase. Our experiments
reported in section Results indicate that two-phase learning is a sufficient incen-
tive for compositionality to emerge.

5. To understand why that is necessary, note that the difference between T=1 and T=2 is the
difference between the RNN having a unimodal (just visual information) previous hidden state
and a multimodal (visual information and previous symbol) previous hidden state. Therefore,
with T =1 the RNN would have no way of adapting to (not to mention utilizing) the additional
linguistic modality.
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Figure 3. Template transfer consists of pre-training the receiver rΨ on two games with
disentangled losses 𝓛1 and 𝓛2 and transferring rΨ to a new object naming game

Algorithm 2 Template transfer approach

1. Initialize senders sθ1
, sθ2

, sθ, receiver rΨ, and training set D
2. for x, yc, ys ∈ D do
3.    m1 ~ sθ1

(x)     ▷ Color naming game
4.    m′ ~ vocabulary
5.    ŷc, ŷs =rΨ ([m1,m′])
6.    𝓛1 = -log_likelihood(yc, ŷc)
7.    m2 ~ sθ2

(x)    ▷ Shape naming game
8.    m′′ ~ vocabulary
9.    x̂,c ŷs =rΨ ([m′′, m2])
10.    𝓛2 = -log_likelihood(ys, ŷs)
11.    optimize((𝓛1(θ1, Ψ)+ 𝓛2 (θ2, Ψ))
12. for x, yc, ys ∈ D do
13.    m ∽ sθ(x)     ▷ Object naming game
14.    ŷc, ŷs =rΨ (m)
15.    𝓛= -log_likelihood(yc, ŷc) –log_likelihood(ys, ŷs)
16.    optimize(𝓛(θ, Ψ))

Our approach instantiates both template transfer and modular composition
as described in section Related work. To simplify the notation, let us assume for a
moment that sθ and rΨ are deterministic functions sθ (x) := arg maxm sθ(m|x) and
rΨ (m) := arg maxy rΨ (y|m) (as is the case during evaluation). The fact that pre-
training involves both the color naming game and the shape naming game can be
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seen as a modular composition of these games with a game ga aggregating the pre-
dictions of the receiver as it communicates with each sender: ga (rΨ(sθ1 (x)), rΨ(sθ2
(x))) such that the loss for ga is 𝓛1 + 𝓛2. The presented approach also instantiates
template transfer from the composite game ga to the object naming game. In the
latter game, the new sender sθ takes advantage of the biases in the receiver rΨ due
to playing the composite game. The significance of these interpretations in further
discussed in section Discussion.

4. Experiments and results

In this section, we attempt to measure how much the template transfer approach
influences the degree of compositionality of a communication protocol as com-
pared to three baseline approaches (random agents, the same architecture without
pre-training and the obverter approach). The compositionality is measured using
three metrics: test accuracy, context-independence and topographical similarity,
which will be described in the first section. Finally, we also try to provide an
attempt at explaining how template transfer affect the biases learned by the
receiver by visualizing the activations of the RNN implementing the receiver. It
turns out that template transfer causes the receiver to learn disentangled represen-
tations of color and shape.

4.1 Measuring compositionality

We utilize three metrics of compositionality of a communication protocol: zero-
shot generalization accuracy, context-independence and topographical similarity.
High zero-shot generalization indicates that the agents correctly map the implicit
compositional structure of inputs to explicate one of the outputs. The other
two metrics focus directly on the transmitted messages, comparing them to the
ground truth, fully disentangled (color, shape) representation.

During evaluation we use the deterministic sender given by s(x) := arg maxm
sθ(m|x), where x is an object.

Test set accuracy
We quantify zero-shot generalization by measuring the accuracy of the agents on
a test set obtained by a compositional split of the dataset: the test set only contain-
ing pairs of shapes and colors not present in the training set, but each color and
shape individually is present in the training set. Test set accuracy therefore mea-
sures the ability to generalize to unseen combinations of seen elements.
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Context-independence
Context-independence was introduced by Bogin et al. (2018) as a measure of
alignment between the symbols in an agent’s messages and the concepts trans-
mitted. We denote by V the set of symbols used to compose messages and by K
the set of concepts, which in our case is the union of available colors and shapes.
Given sender s, and assuming a uniform distribution of objects, we define p(v|k)
as the probability that symbol v ∈ V appears when the sender observes an object
with property k ∈ K. We define p(k|v) in the same manner.6 Further, let vk := arg
maxv p(k|v). The context-independence metric is defined as 𝔼(p(vk|k) · p(k|vk));
the expectation is taken with respect to the uniform distribution on K.

Intuitively, context-independence measures the consistency associating sym-
bols with shapes irrespective of color (and vice versa). It is sometimes considered
restrictive, as it effectively punishes for using synonyms (Lowe et al., 2019).

Topographical similarity
Finally, we introduce topographical similarity (Brighton and Kirby, 2006;
Lazaridou et al., 2018), also known as representational similarity (Kriegeskorte,
2008; Bouchacourt and Baroni, 2018), a measure of structural similarity between
messages and disentangled target labels yc, ys. To define topographical similarity
more formally, let us denote the random variable Lt := L(( , ), ( , )), where
L is the Levenshtein (1966) distance and , and . are ground truth labels
for independently objects x(1), x(2) with the subscripts denoting their shapes and
colors. Note that in our case Lt ∈ {0, 1, 2}. Let Lm := L(s(x1), s(x2)) be the distance
between messages sent by the sender after observing x1 and x2. Topographical sim-
ilarity is the the Spearman p correlation of Lt and Lm.

Topographical similarity is theoretically principled because an analogous
metric is used in computational neuroscience to measure, for instance, the struc-
tural similarity between a stimulus and neural activity evoked by the stimu-
lus (Kriegeskorte, 2008). Moreover, being a second-order relation between the
messages and ground truth labels, topographical similarity mirrors the idea of
Deacon (1998) about symbolic reference being a second-order relation between
indexical signs.

6. While Bogin et al. (2018) estimate these two conditionals based on IBM Model 1 (Brown
et al., 1993), we simply compute occurrence frequencies of k given v and v given k in all recorded
messages.
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4.2 Baselines

To establish sensible lower bounds on all three described metrics, we measure the
performance of three baseline models.

Random baseline
Random baseline is simply the performance of untrained agents.

Same architecture
The most direct comparison of the effect of template transfer is simply not apply-
ing template transfer, i.e. not pretraining the sender on color naming game and
shape naming game and only training the agents on the object naming game.

Obverter baseline
In the obverter algorithm, two agents exchange the roles of the sender and the
receiver. If an agent is the receiver, it behaves as in the object naming game. If an
agent is the sender, it sends message that would have produced the most accu-
rate prediction of color and shape, if it had received such a message as a receiver
(i.e. instead of the greedy decoding used in the original implementation of Batali
(1998), we simply choose the message maximizing accuracy). Accuracy is evalu-
ated against the predictions of the visual classifier. The receiver is trained with
learning rate 10−5. For details, consult Algorithm 3.

Algorithm 3 Obverter

1. Initialize agents a1, a2, visual module v, training set D
2. Initialize the set M of all possible messages m
3. for x,yc, ys ∈ D do
4.    sθ, rΨ ~ {a1, a2}     ▷ Randomly assigning the roles of sender and receiver
5.    m= arg min m∈M evaluate_message(sθ, m)
6.    ŷc, ŷs =rΨ (m)
7.    𝓛 = – log_likelihood(yc, ŷc) – log_likelihood (ys, ŷs)
8.    optimize(𝓛(Ψ))
9. procedure evaluate_message (model, m)
10.    yc, ys =v(x)     ▷ Using visual classifier predictions as a proxy for labels
11.    ŷc, ŷs =model (m)
12.    𝓛′ = – log likelihood(yc, ŷc) – log_likelihood(ys, ŷs)
13.    return 𝓛′

228 Tomasz Korbak et al.



4.3 Results

We compared our approach with several baselines (random, the same archi-
tecture without pre-training games, and our implementation of the obverter
approach) on games with five shapes and five colors. Topographical similarity and
context-independence were computed on the full dataset (train and test); objects
in the dataset were sampled uniformly. The results are presented in Table 1. Tem-
plate transfer clearly leads to highly compositional communication protocols.
While all methods struggled to generalize to unseen objects, template transfer was
the most successful. The relatively strong performance of the baseline model in
terms of average accuracy is perhaps surprising: it correctly guesses the color 47%
of the time (on average) and correctly guesses the shape 47% of the time (on aver-
age), but guesses correctly both only 2% of the time. This is because of an anti-
correlation between shape and color prediction, i.e. for various objects, the agents
specialized in classifying correctly its shape or color. Thus, the “both” column is
more meaningful for comparing accuracies: there is a gap between two baselines
and Obverter on the one hand, and between Obverter and template transfer on
the other.

Table 1. The effect of template transfer on compositionality. The metrics are train and
test set accuracies (the rate of correctly predicted both yc and ys); average over the
individual accuracies for yc and ys; and context-independence (CI) and topographical
similarity (Topo). The models are random baseline (untrained agents); baseline
architecture (without template transfer); template transfer (TT); and obverter algorithm.
All reported metrics are averaged over ten random seeds and standard deviations are
reported in brackets

Model

Accuracy

CI TopoTrain (both) Test (both) Test (avg)

Random 0.04 0.04 0.2 0.04 (± 0.01) 0.13 (± 0.03)

Baseline 0.99 (± 0.01) 0.02 (± 0.05) 0.47 (± 0.09) 0.08 (± 0.01) 0.30 (± 0.05)

Obverter 0.99 (± 0) 0.24 (± 0.23) 0.51 (± 0.19) 0.12 (± 0.02) 0.55 (± 0.13)

Template transfer 1(± 0) 0.48 (± 0.10) 0.74 (± 0.06) 0.18 (± 0.01) 0.85 (± 0.03)

For examples of communication protocols representative of the experiments
conducted, see Table 2 and Figure 4. We can observe that with template transfer
each shape (color) is systematically associated with the same symbol across multi-
ple colors (shapes). In contrast, in the baseline model the symbol associated with
each color (shape) changes across shapes (colors).
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4.4 Visualizing the activations of the receiver

Recall that the receiver rΨ consists of an RNN that reads the message symbol-
by-symbol and a two-layer neural network classifier with two softmax heads: one
for color and one for shape. The last hidden state of the RNN serves an input to
the two-layer neural network classifier. To get a better sense of how the receiver
understands the messages it receives, we visualized the hidden states hm corre-
sponding to each message m sent by the sender after receiving each object x, sam-
pling one object for each color-shape pair. Then we applied principal component
analysis, computed a projection projp1, p2 hm of each hidden state onto two princi-
pal components p1 and p2.7 The scatter plots visualizing the RNN hidden states for
the baseline architecture and template transfer are shown on Figure 5.

While without template transfer there is no clear structure in the space, the
RNN of the receiver trained with template transfer exhibits clear structure: color
and shape are linearly separable and spanned by the two principal components
of the representation space. One can observe that representations learned by the
receiver are disentangled in the sense that the features within the representation
correspond to the underlying causes of the observed data, with separate features
corresponding to different causes (Goodfellow et al., 2016). The causes in our case
are color and shape. Since disentanglement can be seen as a representational cor-
relate of compositionality, it provides further evidence that the semantics agents
use to produce and comprehend messages is indeed compositional (i.e. there is
semantic compositionality in addition to syntactic compositionality).

Table 2. Two example communication protocols, one that emerged via the baseline
architecture (2a), and one via template transfer (2a). Gray cells indicate objects not seen
during training. In (2b), symbols exhibit clear association with colors and shapes, e.g.
symbol 8 is consistently associated with the color magenta (when on first position) and
boxes (when on second position)

a. A non-compositional communication protocol (topographical similarity 0.25)

Box Sphere Cylinder Torus Ellipsoid

blue 10 45 10 45 50

cyan 90 40 30 40 70

gray 35 65 32 65 53

green 00 76 30 60 76

magenta 15 55 12 15 52

7. It is common in the literature to use PCA as a method for visualizing hidden states of RNNs,
see also Yamashita and Tani (2008).
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b. A highly compositional communication protocol (topographical similarity 0.85)

Box Sphere Cylinder Torus Ellipsoid

blue 18 19 15 16 14

cyan 48 49 45 46 44

gray 68 69 65 66 69

green 98 99 95 96 94

magenta 88 89 85 88 84

5. Discussion

In this section, we discuss the implications of our approach focusing on the fol-
lowing points: (i) potential sources of compositionality, (ii) how compositionality
can be understood game-theoretically, (iii) how the results corroborate Deacon’s
(1998) account of reference, (iv) that compositionality may be less cognitively
demanding that previously thought, and (v) that the presented approach is devel-
opmentally plausible to an extent.

Sources of compositionality

In Lewis signaling game pressure for the sender to produce compositional mes-
sages may come from the environment structure, from its own innate biases or
from the dispositions of the receiver. We use a relatively simple environment and
a general agent architecture, which do not put much pressure on the sender.
The pressure for compositionality comes from the receiver. When the receiver is
highly flexible and is able to pick the sender’s meaning perfectly it does not intro-
duce any pressure at all. In our work it is the opposite – the receiver is highly
specific due to its previous history of interactions in a changing context. Two
aspects are worth noting: i) the receiver is prepared to understand compositional
messages even before the first compositional message is produced, ii) the sender
learns to produce compositional messages describing objects after the initial rea-
son for disentangling object properties disappears.
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a. A non-compositional communication protocol (topographical similarity 0.25)

b. A highly compositional communication protocol (topographical similarity 0.85)

Figure 4. Communication protocols in the object naming game admit an information-
theoretic interpretation as prefix code, which can be visualized as a tree. Here we
visualize the trees corresponding to a non-compositional protocol and a high-
compositional protocol. Note that compositionality – which can be seen as a kind of
symmetry in the protocol – is depicted by radial symmetry of the corresponding tree
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We demonstrate this process for the object naming game with a disembodied
receiver, but the same set of pressures might be recreated under different setups.
Let us consider a model in which the receiver is presented with a set of objects and
has to pick the correct one. There, we could manipulate the distribution of dis-
tractor objects in such a way as to effectively reward only distinguishing shapes or
colors. This would lead to a disentangled loss required for the template transfer.

We expect that in the real world multiple pressures affect sender and receiver
simultaneously. History of receiver’s interactions is just one source of such pres-
sures. It is unique because it is able to explain compositionality as a consequence
of past events, regardless of whether it is functional under the present circum-
stances.

Evolutionary game-theoretic interpretation

The presented approach instantiates both template transfer (from the pre-training
games to the object naming game) and modular composition (of the color naming
game and the shape naming game), concepts developed by Barrett and Skyrms
(2017; 2019) and described in section

Related work. The subsequent discussion focuses on template transfer as a
mechanism for reusing skills across contexts and scaffolding compositional com-
munication protocols with simpler protocols. The exploitation of modular com-
position, however, also offers a theoretical insight. There is an interesting analogy
between symbolic composition, an operation over symbols yielding composite
symbols, and modular composition, an operation over games yielding composite
games. The assumption central to our approach is that a game (such as the object
naming game) can be reformulated as a modular composition of two simpler
games: ga(rΨ(sθ1 (x)), rΨ (sθ2 (x))) with a game ga being a function aggregating the
predictions of color and shapes and sender and receiver assumed to be determin-
istic for notational convenience. Under this formulation, we can have specialized
senders sθ1 and sθ2 for the pre-training games. Therefore, decomposing a game –
and enabling the agent to specialize in sub-games – is sufficient for composition-
ality to emerge. One could then conjecture that compositional communication is
itself a composition of distinct communication skills and as such it follows a more
basic kind of compositionality – composing simple skills to give rise to complex
behavior. That conjecture fits well with the account of skill reuse in nature formal-
ized as generalized signaling games and would place our model of compositional
communication among evolutionary game-theoretic explanations of social phe-
nomena such as inference (Barrett and Skyrms, 2017), knowledge sharing (Barrett
et al., 2019) and functional specialization (Barrett et al., 2018).
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a. No template transfer

b. Template transfer

Figure 5. Receiver RNN’s hidden states corresponding for each object type plotted on a
2d plane. Scatter point indicate indicate inputs to the sender, their colors and shapes
indicate the color (blue, cyan, gray, green, magenta) and shapes (box, sphere, cylinder,
torus ellipsoids) of corresponding inputs

Semiotic interpretation

Peirce (1998) famously proposed a hierarchy of forms of signification:

1. Iconic signs refer to their objects by virtue of physical similarity between a
sign and an object as perceived by an agent,

2. Indexical signs refer to their objects by virtue of causal, spatial or temporal
association between a sign and an object as recognized by an agent,
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3. Symbolic signs refer to their objects by virtue of a social convention or tacit
agreement familiar to an agent.

Peirce’s account of precedence and dependence of different forms of reference is
influential both in evolutionary research on the origins of language as well as in
language development research. It is frequently assumed as a target evolutionary
pathway in computational models of the evolution of language (Cangelosi, 2001;
Grouchy et al., 2016).

Deacon (1998) developed a cognitive anthropological interpretation of
Peirce’s semiotics and argued that the linear order over three kinds of signs is
to be interpreted both in terms of ontogenetic and phylogenetic precedence as
well as evolutionary and developmental functional dependence. Regarding prece-
dence, the hierarchy reflects an ascending order of cognitive competence required
to interpret respective signs. Iconic reference requires modest cognitive capaci-
ties to be recognized (perception fine-grained enough to recognize similarity, but
without the requirement for memory) while indexical reference requires a form of
associative learning. Finally, symbolic reference requires reasoning according to
rules defined by a whole system of symbols (Peirce, 1998).8 Empirically, sensitivity
to iconic reference can be found arbitrarily early in phylogeny and most animal
communication systems are indexical. Symbolic reference is usually assumed to
be unique to human languages (Deacon, 1998).

There is, however, another view on Peirce’s hierarchy according to which the
order should be taken not as (evolutionary, developmental or cognitive) prece-
dence, but as a part-of relationship. According to Deacon, “reference is hierarchi-
cal in nature; more complex forms of reference are built up from simpler forms”
(Deacon, 1998, p. 73). This is because the competence to interpret symbolically
assumes competence to interpret indexically (and by consequence, iconically).
In Peirce’s own terms, higher-order forms of reference can be decomposed into
lower order forms in the sense that a lower order form of reference (e.g. an icon)
serves as an interpretant to a higher order form (e.g. an index).

Inspired by Peirce and Deacon, our approach solves the problem of develop-
ing compositional communication protocol from raw pixel input by decomposing
the problem into several simpler problems. These simpler problems are:

1. Learning a visual classifier,
2. Learning non-compositional communication protocols in simple games, and

8. This is because symbolic reference between a symbol S and an object O is determined by a
relationship S has with other symbols S’, S” …, not just the relationship between S and O. Rela-
tionships between symbols may involve rules for composing them, e.g. certain co-occurrences
are allowable and others forbidden.
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3. Learning a compositional communication protocol.

These problems map into the hierarchy different forms of reference: iconic refer-
ence, indexical reference and complex indexical reference9 (Peirce, 1998; Deacon,
1998). Thus, template transfer implements the Peircean conjecture that composi-
tional communication is preceded (both evolutionarily and developmentally) by
progressively augmented iconic and indexical communication protocols. It also
illustrates how the idea of simpler forms of reference used as a scaffolding for
complex forms of reference can be formalized in terms Lewis signaling games by
appealing to modular composition and template transfer. More specifically, both
the color naming game and the shape naming game considered separately instan-
tiate simple indexical communication between sθ1 and rΨ and between sθ2 and rΨ.

Additionally, the pre-training game (composed of the color naming game and
the shape naming game) constrains the receiver to interpret the messages of both
sθ1 and sθ2 compositionally. It is this inductive bias – the receiver playing the role
of a compositional interpretant (in Peirce’s sense) – that further constrains the
new sender sθ to communicate compositionally.

Cognitive interpretation

Some of the existing methods of inducing compositionality (e.g. the obverter
approach) focus on imposing strong inductive biases on the architecture of the
agents (recall section Related work). For instance, the obverter approach is based
on the assumption that an agent can use its own responses to messages to predict
other agent’s responses and thus can iteratively compose its messages to maximize
the probability of desired response (according to the self-model). Therefore, it
makes strong assumptions about the agents and task: to be able to use themselves
as models of others, the agents must share an identical architecture and the task
must be symmetric (the agent must be able to exchange their roles). This excludes
games with functional specialization of agents. Template transfer is a model-free
technique that makes one assumption (similar to the one present in Nowak and
Krakauer (1999)): that the loss function can be decomposed into two disentan-
gled loss functions (as in the case of decomposing 𝓛 into 𝓛1 and 𝓛2 in (2)–(3).
(Note that there is no need for the input to be disentangled.) The fact that tem-
plate transfer can outperform the obverter approach on all compositionality met-

9. We deliberately refrain from using the term “symbolic reference” because the communica-
tion protocols learned by the agents in presented experiments are not non-controversially sym-
bolic in the sense of Deacon as they lack rich symbol-to-symbol relationships.

236 Tomasz Korbak et al.



rics lends support to the claim that the cognitive requirements for developing a
compositional communication protocol are quite modest.

One may argue that template transfer offloads some of the cognitive complex-
ity of learning a compositional communication protocol to the interaction his-
tory, supporting a distributed view of language as an activity happening in a social
world that evolves outside of individual speakers (Cowley, 2011). According to the
distributed view of language, a speaker might be constrained by multiple inter-
actions antecedent to the speaker coming to being. The usefulness of this view
is more evident when thinking about the compositional communication proto-
col that the receiver learns in the pre-training game as instantiating a replicable
constraint in the sense of (Rączaszek-Leonardi, 2012). Assuming this picture, lan-
guage is a system of physical structures that act as constraints, selected due to hav-
ing a history of harnessing dynamics in a useful way and transmitted between
settings. Importantly, the emergence and transmission usually happen on a slower
timescale than the actual constraining. In the conducted experiments, the compo-
sitional communication protocol was learned in the pre-training phase as a useful
way of harnessing the communication dynamics. Due to its usefulness, it persisted
in receiver’s weights, which allowed it to replicate to the object naming game, con-
straining a new sender via receiver’s expectations. In effect, the new sender sθ took
advantage of the solution to the coordination problem developed jointly by sθ1, sθ2,
and inherited it implicitly, never interacting with sθ1 and sθ2. This illustrates how
the communication constraints emerge in a distributed way in a structured social
environment and depend on each other (in a sense that pre-existing constraints
unleash novel forms of communication) (Raczaszek-Leonardi et al., 2018). It is in
this sense that the problem of learning to communicate compositionally can be
solved much more easily by agents embedded in a rich, social world.

Developmental interpretation

While solving the problem of developing compositional communication protocol
from raw pixel input and learning compositional communication from scratch in
an end-to-end manner (Lazaridou et al., 2018; Choi et al., 2018) is of theoretical
interest, it significantly differs from how human children learn compositional
aspects of language. Children learn communicative functions of utterances in a
rich and highly structured environment (child-directed speech exhibits repetitive
patterns and is augmented with pointing, gazing or other means of attention shift-
ing) and through simple language games that lack many features of adult language
(Stern, 1974; Bruner, 1983; Nomikou et al., 2017; Raczaszek-Leonardi et al., 2018).
The template transfer approach is developmentally inspired as it acknowledges
both the piecemeal (children learn words holistically before learning complex
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syntactical constructions) and the socially embedded (the role of child-directed
speech) character of language development.

6. Conclusions

The goal of the paper was to present a novel approach to developing emergent
compositional communication based on the idea of template transfer (Barrett and
Skyrms, 2017) implemented by sharing agents across games. Template transfer
was used to model a variety of semiotic, social and cognitive phenomena (Barrett
et al., 2019, 2018) and can probably be extended to new, more challenging prob-
lems in multi-agent systems research.

Limitations

Our model is limited by the simplicity of the task and the static nature of the envi-
ronment. The communication channel is constrained by predefined vocabulary
size (10) and message length (2), and further by partitioning the channel in the
pre-training game into single-symbol subchannels for sender sθ1 and sθ2. Messages
from the two senders are presented to the receiver at fixed positions in a sequence
(sθ1’s message at first position, sθ2’s message at second position). This potentially
simplifies the task and forces a fixed order of symbols in the evolved composi-
tional language. Moreover, there are only two effective degrees of freedom in the
world (color and shape), agents are assigned with specific roles and they do not
control which object they are being presented with. Future work might focus on
extending the template transfer approach to more realistic, interactive 3d environ-
ments with messages of arbitrary length, non-trivial compositionality (Steinert-
Threlkeld, 2020; Korbak et al., 2020) could emerge. A richer structure of the envi-
ronment and the task could also lead to the emergence of symbolic reference
(Deacon, 1998) with the meanings of messages being deeply interconnected.
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