On reciprocal degree constructions

 A view from MandarinI-Ta Chris Hsieh
National Tsing Hua University

Abstract

A degree sentence such as John and Mary are equally tall conveys both reciprocity and equivalence and hence are termed "Reciprocal Equatives" (RE). Building on Schwarz's (2007) pioneer study, I suggest an account for this degree construction that covers a wider range of data. To the extent that the proposal is on the right track, it provides new support for building in plurality in the domain of degrees, an idea that has been put forward by Beck (2010; 2014) and Dotlačil \& Nouwen (2016).

Keywords: reciprocal (in)equative, degree plurality, plural predication, tolerance of exceptions

1. Introduction

The notion of plurality has been extended to degrees in many research (e.g. Fitzgibbons et al. 2008; Beck 2010, 2013, 2014; Dotlačil \& Nouwen 2016). As Dotlačil \& Nouwen (2016) point out, it is not surprising that semantic mechanisms governing plurality formation and plural predication may be extended to degrees, given that degrees and entities behave very much alike. For instance, (1a) carries a cumulative interpretation (e.g. John is 20 years old, Peter is 22, and Mary 26) in the way that (1b) possibly could (e.g. John likes Bill, Peter likes Chris, and Mary likes Sue).
(1) a. John, Peter and Mary are 20, 22 and 26 years old.
b. John, Peter and Mary like Bill, Chris and Sue.

Most proposals relying on the idea of degree plurality of some form (Beck 2010, 2014; Dotlačil \& Nouwen 2016) aim to account for comparatives with quantifiers in the than- clause, an example of which is given in (2). ${ }^{1}$ Intuitively, (2) is true only

[^0]if John is taller than the tallest girl. While details vary, the research along these lines all suggest that this intuition may be captured if the than-clause is interpreted as a collection of degrees that represents all the girls' heights and the comparison relation targets the height of John and that of the tallest girl.
(2) John is taller than every girl is.

This paper intends to widen the scope of investigation along these lines by seeking another phenomenon that could possibly provide support for the idea of incorporating plurality in degree semantics. The discussion centers on what Schwarz (2007) calls "Reciprocal Equatives" (henceforth, RE), a degree construction that receives much less attention in the literature. Examples of this degree construction are given in (3)-(4). ${ }^{2}$
(3) Hans und Maria sind gleich schwer.
(German)
Hans and Maria are equally heavy
'John and Mary are equally heavy.'
(4) Yūehàn hé Măli yíyàng zhòng. (Mandarin)
John and Mary equally heavy
'John and Mary are equally heavy.'
Both examples express that John's weight and Mary's are equivalent. This degree construction, as noted by Schwarz (2007), may be characterized as both "reciprocal" and "equivalent", and these meaning components are carried out by the RE morpheme gleich/yíyàng. This is also where this construction differs from English as-equatives; English as-equatives, as shown in (5), do not express "mutual equivalence" among the objects in comparison.
(5) John is as tall as Mary, and even taller.
(Matushansky 2008, attributed possibly to Chris Kennedy)
(6) Hans und Maria sind gleich groß.

Hans and Maria are equally tall
${ }^{\#}$ Hans ist sogar größer als Maria.
Hans is even taller than Maria
Lit: 'Hans and Maria are equally tall. Hans is even taller than Maria.'

[^1](7) \#Yuēhàn 1 hé Mǎlì yíyàng gāo; tā ${ }_{1}$ shènzhi bǐ Mǎlì gāo.

John and Mary equally tall; he even comp Mary tall
Lit. 'John and Mary are equally tall; he is even taller than Mary.'
More syntactic and semantic properties of REs are reviewed below. The discussion throughout this paper is mainly based on data from Mandarin; some German data however are mentioned when they bear relevance to the discussion. As to the reason why English may not be appropriate for this topic, I refer the reader to Schwarz (2007) (and also Footnotes 3 and 4 below). Nonetheless, I expect the proposal to be extended to English and any other language where this degree construction is found.

1.1 Types of reciprocal equatives

In addition to predicative REs like (3)-(4), there are adnominal ones; see (8)-(9).
(8) Yuēhàn yŏu-zhé yíyàng cháng-dė ĕrduo.
(Mandarin)
John have-PROG equally long-mOd ear
'John has equally long ears.'
(9) Yuēhàn hé Mălí bēi-lė yíyàng zhòng-dé bēibāo. (Mandarin) John and Mary carry-PERF equally heavy-mod backpack 'John and Mary carry/carried equally heavy backpacks.'

Degree comparison in a RE may be along the dimension of quantity, as shown in (10)-(11).
(10) Yuēhàn hé Mălí yǎng-lė yíyàng dūo-de māo.
(Mandarin)
John and Mary keep-perf equally many-mod cat 'John and Mary have equally many cats.'
(11) Yuēhàn yǎng-lė yíyàng duō-dė gǒu gēn māo.
(Mandarin)
John keep-perf equally many-mod dog and cat
'John has equally many dogs and cats.'
The need to distinguish an amount RE from those like (8)-(9) comes from their contrast with (12b): in German, for instance, a simple plural noun modified by the Q-adjective viele 'many' does not suffice to license the RE morpheme gleich, though the RE morpheme, in both (12a) and (12b), occur in pre-nominal position. ${ }^{3}$

[^2]a. Hans hat gleich longe Ohren.

Hans has equally long ears
'Hans has equally long ears.'
b. *Hans hat gleich viele Haustiere.

Hans has equally many pets
The RE morpheme, in most cases, needs to be accompanied by a plural nominal; as shown in (13), a singular nominal in subject position of a predicative RE leads to ungrammaticality. ${ }^{4}$
(13) a. ${ }^{*}$ Maria ist gleich schwer.

Maria is equally heavy
b. *Mălí yíyàng zhòng.
(Mandarin)
Mary equally heavy
'Mary is equally heavy.'
At least in Mandarin however, the presence of a universal quantifier suffices to license the RE morpheme, as shown in (14)-(15): in (14), all the students in the discourse context are compared based on their speed; in (15), they are compared based on the length of the rope they are given by Zhangsan.
(14) měi-gé xuéshēng dōu pǎo-dè yíyàng kuài.
every-ClF student all run-PTCP equally fast
'Every student runs/ran equally fast.'
(15) Zhāngsān gěi-lė měi-gė xuéshēng yī-tiáo yíyàng cháng-dė shéngzi. Zhangsan give-PERF every-CLF student one-CLF equally long-mOD rope 'Zhangsan gave every student an equally long rope.'
(i) Zhāngsān yǎng-lė yíyàng duō-dè chǒngwù.

Zhangsan keep-PERF equally many-mod pet
4. English Maria is equally heavy is grammatical on a reciprocal, discourse anaphoric interpretation, which is not in the concern of this paper. As Schwarz (2007) notes, such an interpretation, in some dialects of German, is not possible for gleich. To my ear, such an interpretation is possible for Mandarin yíyàng only if it is accompanied by the additive particle yěi 'also'.
(i) Yuēhàn bēi-le yí-gé wǔshi gōngjīn zhòng-dè bēibāo; Mălì */?? (yěi) bēi-lè John carry-PERF one-clf 50 kg heavy-mod backpack; Mary also carry yí-gé yíyàng zhòng-dé bēibāo.
one-clf equally heavy-mod backpack
Intended: ‘John carried a backpack that weighs 50 kgs ; Mary carried an equally heavy backpack.'
\cong John and Mary each carry one backpack weighing 50kgs.

Schwarz (2007) also notes that in spite of the fact that a universal quantifier headed by German jeder is morphologically singular, a predicative RE with a universal subject like (16) sounds significantly better than (13a).
(16) Jeder Junge war gleich schnell.
'Every boy was equally fast.'

1.2 Vagueness and context sensitivity

The adnominal RE (9) may be easily judged true in the scenario in (17), where John and Mary each carry just one backpack.
(17) John carries one backpack weighing 10kgs; Mary carries one weighing 10kgs.

Intuitions however are not always this clear, especially when objects in comparison are in a relatively large group. In a scenario like (18), where John and Mary each carry more than one backpack, and only one backpack John carries weighs the same as one Mary carries, judgment making seems less easy.
(18) John carries two backpacks a and b ; a weighs 10 kgs and b 15 kgs .

Mary carries two backpacks c and d ; c weighs 10 kgs and d 5 kgs .
Schwarz (2007) reports that intuitively the German counterpart of (9) may be true or false in such a scenario. ${ }^{5}$ To my ears as well as those of the speakers I have consulted, the Mandarin Example (9) is difficult to judge in this scenario and might hardly be considered true. Nevertheless, such difficulty in judgment making seems to be ameliorated with extra contextual information; for instance, with the additional information in (19), it becomes much easier to consider (9) true in (18).
(19) All the students randomly pick two backpacks to carry on the hiking trip. After the hiking trip, let's weigh the backpacks they choose and see whether there are any two students who get at least two backpacks that have the same weight. It then happens that...
a. Yuēhàn hé Mălì bēi-lé yíyàng zhòng-dè bēibāo. (Mandarin) John and Mary carry-Perf equally heavy-mod backpack 'John and Mary carried/carry equally heavy backpacks.'

The difficulty in judgment making also varies with the choice of verb; changing the verb in (9) to pick (see (20a)) makes it much easier to consider this example true in a scenario very similar to (18) (see (20b)).

[^3]a. Yuēhàn hé Mǎlì tīao-lė yíyàng zhòng-dė bēibāo. (Mandarin) John and Mary pick-PERF equally heavy-mod backpack 'John and Mary picked equally heavy backpacks.'
b. John picks two backpacks, one weighs 10kgs and one 15kgs; Mary picks two backpacks, one weighs 10 kgs and one 5 kgs .

All these observations suggest that intuitions around an adnominal RE may be vague about the contribution of each individual in comparison and may be sensitive to the context of utterance and the property attributed. This is reminiscent of vagueness observed in plural predication, where the contribution of each individual may be vague and is highly influenced by the linguistic and discourse contexts (Schwarzschild 1996; et al.).

1.3 Roadmap

An adequate analysis of REs should not only cover the data discussed in $\S 1.1$ but also provides an explanation for the vagueness and contextual sensitivity shown in § 1.2; this paper aims to achieve this goal. The analysis I would like to propose relies on the assumption that a reciprocal degree morpheme, such as German gleich and Mandarin yíyàng, obligatorily takes scope at LF. Crucially, some form of "degree plurality" along the lines of Beck (2014) and Dotlačil \& Nouwen (2016) need to be built in in degree semantics. On these grounds, the context sensitivity and vagueness found in an adnominal RE may be cashed out with a covered-based theory of plural predication (Schwarzschild 1996; Brisson 1998, 2003; et al.). In § 2 the theoretical tools needed in my proposal are reviewed. In § 3 I lay out my analysis of the RE morpheme. § 4 centers on adnominal REs; the discussion reveals how delicately plurality in the domain of individuals interact with that in the domain of degrees. § 6 briefly discusses reciprocal inequatives. In § 7 I discuss the alternative analysis. Some concluding remarks are in § 8.

2. Plural predication and degree plurality

The analysis I would like to suggest dwells on: (i) the theory of plural predication that makes use of the operators * and ${ }^{* *}$ (Link 1983; Sternefeld 1998; Beck 2000, 2001) constrained by covers, a salient way objects in the universe of discourse are grouped (Schwarzschild 1996; Brisson 1998, 2003); and (ii) Dotlačil \& Nouwen's (2016) idea of degree plurality. ${ }^{6}$

[^4]
2.1 Plural predication and covers

Following Link (1983), Sternefeld (1998), Beck (2000; 2001) and many others, I assume the pluralization operations ${ }^{*}$ and ${ }^{\star *}$, which are introduced via the operators * and ${ }^{* *}$ prefixed to the constituent whose denotation undergoes pluralization. The application of these operators, I assume, may combine freely with QR and variable binding (Beck 2000; 2001, et seq.). ${ }^{7}$ Along the lines of Schwarzschild (1996), Brisson (1998; 2003), Beck (2001) and many others, I further assume that quantification introduced by these pluralization operators are constrained by covers, a salient way of grouping the objects in the universe of discourse; see the definition in (21), which is adopted from Schwarzschild (1996) with slight modification. Throughout the discussion below, u is the summation operation; $x \sqcup y$ is the sum of two individuals x and y .
(21) C is a cover of a set P iff:
C is a subset of the smallest set X such that: (i) $P \subseteq X$, and (ii) for any x, y such that $x \in X$ and $y \in X,(x \sqcup y) \in X$; and every member of P is part of some member in C.

The way a cover C groups objects in the context of utterance is context-sensitive. Following Schwarzschild (1996), I assume that: (i) a cover C is introduced through a free pronoun C at LF; and (ii) if there is no cue about how objects in the universe of discourse should be grouped, then they are grouped with the default option, the one in which each atomic individual forms a group on its own.

The operator * pluralizes a one-place predicate and gives rise to the so called "distributive reading" of, e.g. John and Mary left, according to which John left and Mary, too, did. In the definition given in (22), \subseteq is a part-whole relation; $x \sqsubseteq y$ iff x is part of y.
a. $\quad \mathbb{}{ }^{*} \rrbracket(C)\left(P_{\langle e, t\rangle}\right)=\lambda X_{e} . \forall x \subseteq X\left[x \in C \rightarrow\left[{ }^{*} P\right](x)\right]$
b. Distribution:
${ }^{*}$ is that function: $D_{<e, t\rangle} \rightarrow D_{<e, t\rangle}$ such that for any $f \in D_{<e, t\rangle}$ and any x in $D_{e},\left[{ }^{\star} \mathrm{f}\right](\mathrm{x})=1$ iff $\mathrm{f}(\mathrm{x})=1$ or $\exists \mathrm{u} \exists \mathrm{v}\left[\mathrm{x}=(\mathrm{u} \sqcup \mathrm{v})\right.$ and $\left[{ }^{\mathrm{*}} \mathrm{f}\right](\mathrm{u})$ and $\left.\left[{ }^{\star} \mathrm{f}\right](\mathrm{v})\right]$
c. 【[John and Mary $[\star-C$ left $]] \rrbracket=1$ iff $\forall \mathrm{x} \subseteq(\mathrm{J} \sqcup \mathrm{M})[\mathrm{x} \in \mathrm{C} \rightarrow \star \operatorname{left}(\mathrm{x})]$, where $\mathrm{C} \supseteq\{\mathrm{J}, \mathrm{M}\}$
${ }^{* *}$ is prefixed to a 2-place predicate and gives rise to the so called "cumulative reading" of, e.g. John and Mary love Bill and Sue, according to which each of John and

[^5]Mary loves one of Bill and Sue, and each of Bill and Sue is loved by one of John and Mary.

> a.	$\quad \llbracket *$
$*$	$\quad \begin{aligned}(C)\left(P_{<e,<e, t \gg}\right) & =\lambda X_{e} . \lambda Y_{e} . \\ & \forall x \sqsubseteq X[x \in C \rightarrow \exists y \sqsubseteq Y[y \in C \text { and }[* * P](x)(y)]] \text { and } \\ & \forall y \sqsubseteq Y[y \in C \rightarrow \exists x \sqsubseteq X[x \in C \text { and }[* * P](x)(y)]]\end{aligned}$

b. Cumulation:
${ }^{* *}$ is that function: $D_{<e,<e, t \gg} \rightarrow D_{<e,\langle e, t \gg}$ such that for any $R \in D_{<e,\langle e, t \gg}$ and any x, y such that $x \in D_{e}$ and $y \in D_{e},[* * R](x)(y)=1$ iff $R(x)(y)$, or $\exists x_{1} \exists x_{2} \exists y_{1} \exists y_{2}\left[x=\left(x_{1} \sqcup x_{2}\right)\right.$ and $y=\left(y_{1} \sqcup y_{2}\right)$ and $\left[{ }^{\star *} R\right]\left(x_{1}\right)\left(y_{1}\right)$ and $\left.[* * R]\left(x_{2}\right)\left(y_{2}\right)\right]$
c. $\llbracket[$ John and Mary $[[* *-C]$-love Bill and Sue $] \rrbracket=1$ iff
$\forall x \sqsubseteq(J \sqcup M)\left[x \in C \rightarrow \exists y\left[y \sqsubseteq(B \sqcup S)\right.\right.$ and $y \in C$ and $\left.\left.{ }^{* *} \operatorname{love}(y)(x)\right]\right]$ and
$\forall y \sqsubseteq(B \sqcup S)\left[y \in C \rightarrow \exists x\left[x \sqsubseteq(J \sqcup M)\right.\right.$ and $x \in C$ and $\left.\left.{ }^{* *} \operatorname{love}(y)(x)\right]\right]$, where $C \supseteq\{J$, M, B, S\}

2.2 Plurality in the domain of degrees

Dotlačil \& Nouwen (2016) suggest that in the doman of degrees, a sum of degrees may be formed via the same summation operation a sum of individuals is: for any two degrees d and $\mathrm{d}^{\prime}, \mathrm{d} \sqcup \mathrm{d}^{\prime}$ is the sum of d and d^{\prime}. A gradable adjective such as tall, in their proposal, relates a degree d , be it plural or atomic, and an individual x in the way that the height of x (i.e. $\left.\mu_{\text {height }}(x)\right)$ is part of d.

$$
\begin{equation*}
\llbracket \text { tall } \rrbracket=\lambda \mathrm{d}_{\mathrm{d}} \cdot \lambda \mathrm{x}_{\mathrm{e} \cdot} \cdot \mu_{\text {height }}(\mathrm{x}) \sqsubseteq \mathrm{d} \tag{24}
\end{equation*}
$$

An operator min is postulated to pick out the unique member d^{\prime} from a set D of sums of degrees such that d^{\prime} does not contain any other members in D as its proper subparts. Applying min to the set of degrees that contain, e.g. John's height, gives us John's height.
(25) For any $\mathrm{D}^{\prime} \in \mathrm{D}_{<\mathrm{d}, \mathrm{t}>}, \operatorname{MIN}\left(\mathrm{D}^{\prime}\right)=\iota \mathrm{d}\left[\mathrm{D}^{\prime}(\mathrm{d})\right.$ and $\neg \exists \mathrm{d}^{\prime}\left[\mathrm{D}^{\prime}\left(\mathrm{d}^{\prime}\right)\right.$ and $\left.\left.\mathrm{d}^{\prime} \sqsubset \mathrm{d}\right]\right]$; undefined otherwise.
(26) If $\mu_{\text {height }}(\mathrm{J})=180 \mathrm{~cm},\{\mathrm{~d}: \llbracket$ tall $\rrbracket(\mathrm{d})(\mathrm{J})\}=\left\{\mathrm{d}: \mu_{\text {height }}(\mathrm{J}) \sqsubseteq \mathrm{d}\right\}=\{\mathrm{d}: 180 \mathrm{~cm} \sqsubseteq \mathrm{~d}\}$; $\operatorname{MIN}\left(\lambda d . \mu_{\text {height }}(\mathrm{J}) \sqsubseteq \mathrm{d}\right)=\mu_{\text {height }}(\mathrm{J})=180 \mathrm{~cm}$

As noted above, Dotlačil \& Nouwen's (2016) main goal is to account for comparatives with a universal quantifier inside the than-clause. Intuitively, John is taller than every girl is is true iff John is taller than the tallest girl. Dotlačil \& Nouwen suggest that this intuition may be captured in the following way. Suppose that in the context there are three girls a, b, and c. The than-clause then
denotes the set of degrees such that d contains as its subpart every girl's height (i.e. $\left(\mu_{\text {height }}(\mathrm{a}) \sqcup \mu_{\text {height }}(\mathrm{b}) \sqcup \mu_{\text {height }}(\mathrm{c})\right) \sqsubseteq \mathrm{d}$; see (27)).
(27) \llbracket than every girl is all $]=\lambda d_{d} . \forall \mathrm{x}\left[\mathrm{x}\right.$ is a girl $\left.\rightarrow \mu_{\text {height }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]$
min then picks out the unique sum from this set that does not have any other members as its subparts, and that is $\left(\mu_{\text {height }}(\mathrm{a}) \sqcup \mu_{\text {height }}(\mathrm{b}) \sqcup \mu_{\text {height }}(\mathrm{c})\right)$. With the application of the cumulation operation **, the truth conditions (28) are derived, which amounts to saying that $\mu_{\text {height }}(\mathrm{J})$ is greater than all of $\mu_{\text {height }}(\mathrm{a}), \mu_{\text {height }}(\mathrm{b})$ and $\mu_{\text {height }}(\mathfrak{c})$. This then correctly predicts that John is taller than every girl is is true iff John is taller than the tallest girl.

$$
\begin{equation*}
\mu_{\text {height }}(\mathrm{J})\left[{ }^{* *}>\right] \operatorname{MIN}\left(\lambda \text { d. } \forall \mathrm{x}\left[\mathrm{x} \text { is a } \operatorname{girl} \rightarrow \mu_{\text {height }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]\right) \tag{28}
\end{equation*}
$$

3. The semantics of REs

Below I lay out my proposal for reciprocal equatives. The lexical meaning of the Mandarin RE morpheme yíyàng I would like to suggest is given in (29).

$$
\begin{equation*}
\llbracket y i ́ y a ̀ n g \rrbracket=\lambda \mathrm{D}_{<\mathrm{d}, \mathrm{t}>}^{\prime} . \forall \mathrm{d}^{\prime} \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime} \mathrm{d}^{\prime \prime} \subseteq \text { min }\left(\mathrm{D}^{\prime}\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right] \tag{29}
\end{equation*}
$$

According to (29), the RE morpheme operates on a set of degrees and asserts that all the subparts of the member picked out by the operator min from this set are mutually equivalent. Together with the definition of Min in (25), it then follows from (29) that the set of sums of degrees an RE morpheme operates on is not empty; this, I suggest, may be seen as a presupposition carried by an RE morpheme.

I assume that at the surface an RE morpheme is located at the specifier of AP (see (30)). Along with the assumption that a gradable adjective like tall relates degrees to individuals in the way we have seen in (24) and denotes a function of type $<\mathrm{d},<\mathrm{e}, \mathrm{t} \gg$, the type mismatch between the RE morpheme and the gradable adjective is resolved by having the RE morpheme undergo LF-movement; a degree variable then is left in its base-generation position and bound by a λ abstractor 7 (see Heim \& Kratzer (1998); see (30)).

$$
\begin{equation*}
\left[_{\mathrm{AP}} \text { yíyàng }\left[{ }_{\mathrm{A}^{\prime}} \text { tall }\right]\right] \Rightarrow\left[\text { yíyàng }\left[7\left[\ldots\left[_{\mathrm{AP}} d_{7}\left[{ }_{\mathrm{A}^{\prime}} \text { tall }\right]\right]\right]\right]\right] \tag{30}
\end{equation*}
$$

3.1 Universal and predicative REs

Along with the proposal laid out above, an RE with a universal quantifier, such as (14)-(15) and the Mandarin Example (31), may be accounted for in a way
very similar to that in which a comparative with a universal quantifier in the than-clause is in Dotlačil \& Nouwen's (2016) analysis.
(31) měi-yī-kùai níupái dōu yíyàng hòu.
(Mandarin)
every-one-cla steak all equally thick
'Every steak is equally thick.'
Take (31) for instance; at LF the RE morpheme moves out of its base-generation position; the truth conditions in (32) then are derived. ${ }^{8}$

【 [yíyàng [7 [every steak [d_{7} thick]]]] 』
$=\llbracket$ yíyàng $\rrbracket\left(\lambda \mathrm{d}_{\mathrm{d}} \cdot \forall \mathrm{x}\left[\mathrm{x}\right.\right.$ is a steak $\left.\left.\rightarrow \mu_{\text {thickness }}(\mathrm{x}) \subseteq \mathrm{d}\right]\right)$
$=1$ iff $\forall \mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime} \mathrm{d}^{\prime \prime} \sqsubseteq \min \left(\lambda \mathrm{d}_{\mathrm{d}} . \forall \mathrm{x}\left[\mathrm{x}\right.\right.\right.$ is a steak $\left.\left.\left.\rightarrow \mu_{\text {thickness }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]$
'All the subparts of the unique sum d of degrees that contains the thickness of each of the steaks are equivalent to each other.'

These truth conditions say that all the subparts of the degree picked out by min, namely the one that contains all and only the thickness of all the steaks in comparison, are mutually equivalent. Suppose that the steaks in comparison are a, b, and c ; the set of degrees yíyàng operates on contains all and only those that have $\mu_{\text {thickness }}(\mathrm{a}) \sqcup \mu_{\text {thickness }}(\mathrm{b}) \sqcup \mu_{\text {thickness }}$ (c$)$ as one of their subparts; MIN then picks out $\mu_{\text {thickness }}(\mathrm{a}) \sqcup \mu_{\text {thickness }}(\mathrm{b}) \sqcup \mu_{\text {thickness }}(\mathrm{c})$, the unique one that contains all and only the thickness of the steaks in comparison. By saying that all the subparts of $\mu_{\text {thick }}$ ${ }_{\text {ness }}(\mathrm{a}) \sqcup \mu_{\text {thickness }}(\mathrm{b}) \sqcup \mu_{\text {thickness }}(\mathrm{c})$ are mutually equivalent, the derived truth conditions amount to saying that $\mu_{\text {thickness }}(\mathbf{a})=\mu_{\text {thickness }}(\mathrm{b})=\mu_{\text {thickness }}(\mathfrak{c})$; i.e. that all the steaks in comparison have the same thickness.

In a predicative RE like (3)-(4), the pluralization operator * is prefixed to AP and introduces universal quantification in plural predication; at LF, the RE morpheme undergoes movement at LF. The truth conditions in (33b) then are derived. With the natural assumption that the cover C contains the individuals J and M , the derived truth conditions assert that $\mu_{\text {weight }}(\mathrm{J}) \sqcup \mu_{\text {weight }}(\mathrm{M})$ have sub-

[^6]parts mutually equivalent, which amounts to saying that John's weight and Mary's weight are the same. ${ }^{9}$
(33) a. [yíyàng/gleich $\left[7\left[J\right.\right.$ and $M\left[{ }^{*}-C\left[{ }_{\mathrm{AP}} d_{7}\right.\right.$ heavy $\left.\left.\left.\left.]\right]\right]\right]\right]$
b. $\llbracket(33 \mathrm{a}) \rrbracket=\llbracket$ yíyàng/gleich $\rrbracket\left(\lambda \mathrm{d} . \forall \mathrm{x} \subseteq(\mathrm{J} \sqcup \mathrm{M})\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]\right)=1$ iff $\forall \mathrm{d}^{\prime} \mathrm{d}^{\prime}\left[\mathrm{d}, \mathrm{d} " \sqsubseteq \min \left(\lambda \mathrm{~d} . \forall \mathrm{x} \sqsubseteq(\mathrm{J} \sqcup \mathrm{M})\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \subseteq \mathrm{d}\right]\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]$
'All the subparts of the unique degree that contains the weight of John and that of Mary are equivalent.'

3.2 The plurality requirement of REs

According to the lexical meaning suggested in (29), the RE morpheme, instead of sets of individuals, operates on sets of degrees. This begs for the question how the ungrammaticality of (13a)-(13b) may be accounted for; in both cases, a singular nominal in subject position results in ungrammaticality.
a. ${ }^{*}$ Maria ist gleich schwer.
(German)
Maria is equally heavy
b. *Măli yíyàng zhòng. (Mandarin)
Mary equally heavy
Consider (35a), the LF representation of the examples in (13). If we relativize the lexical meaning of a gradable adjective to possible worlds (see (35a)), the examples in (13) then denote the proposition in (35b). This proposition, if defined, obviously is tautological, for the degree picked out by min, namely $\mu_{\text {weight }}(\mathrm{w})(\mathrm{M})$, the weight of Mary in the world of evaluation w , is atomic (i.e. has no subparts other than itself) across worlds and hence always has subparts mutually equivalent.
(34) \llbracket heavy $\rrbracket^{\mathrm{w}}=\lambda \mathrm{d}_{\mathrm{d}} \cdot \lambda \mathrm{x}_{e} \cdot \mu_{\text {weight }}(\mathrm{w})(\mathrm{x}) \subseteq \mathrm{d}$, where $\mu_{\text {weight }}(\mathrm{w})(\mathrm{x})$ is the weight of x in w

[^7]a. $\quad\left[\right.$ yíyàng $\left[7\left[\right.\right.$ Mary $_{7}$-tall $\left.\left.]\right]\right]$
b. $\quad \lambda \mathrm{w} . \forall \mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime} \sqsubseteq \operatorname{MIN}\left(\lambda \mathrm{d} . \mu_{\text {weight }}(\mathrm{w})(\mathrm{M}) \sqsubseteq \mathrm{d}\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]$

It has been suggested in much research that some sentences are ungrammatical because the propositions they express are tautological (Barwise \& Cooper 1981; Gajewski 2002; et al.); for instance, Barwise \& Cooper (1981) suggest that a strong quantifier is ungrammatical in a there-sentence (e.g. ${ }^{*}$ There was every student in the room) because it leads to tautological truth conditions. Along these lines, I suggest that the ungrammaticality of the examples in (13) may be captured in the same way: in these cases, min picks out an atomic degree in all words where they are defined; the propositions they express are trivially true and hence are tautological, which consequently results in ungrammaticality. ${ }^{10}$

4. Covers, grouping and the interpretation of adnominal REs

4.1 The syntax and semantics of adnominal REs

As already noted in § 1.2, intuitions around an adnominal RE like (9) are vague, and judgments on these examples are highly influenced by other information in the context of utterance.
(9) Yuēhàn hé Mălì bēi-lé yíyàng zhòng-dé bēibāo.
(Mandarin)
John and Mary carry-perf equally heavy-mod backpack 'John and Mary carry/carried equally heavy backpacks.'

[^8]Given that the degree min is not necessarily atomic, this proposition is not trivial. (i), unlike (13b), hence is grammatical.

Along with the assumptions laid out above，an adnominal RE like（9）may be assigned the LF（36）．Here I assume that the object nominal in（9）denotes an existential plural quantifier and undergoes QR ；some crucial steps of the deriva－ tion and the derived truth conditions are in（37）．${ }^{11} 12$
 packs］${ }_{\text {DP }}$ ］
LF：$\quad \quad$ yíyàng $\left[\oplus_{\triangle} 7\left[\left[_{D P} \exists\left[\left[{ }^{*}-C\right]-\left[d_{7} \text { heavy }\right]\right] \text { backpacks }\right]\right]_{\text {DP }} 1\right.$ $\left[J 冘 M[\star *-C]-\right.$ carry $\left.\left.\left.\left.\mathrm{t}_{1}\right]\right]\right]\right]$
（37）$\llbracket \mathrm{DP} \rrbracket=\lambda \mathrm{P}_{<e, t>} \cdot \exists \mathrm{X}\left[* \operatorname{backpack}(\mathrm{X})\right.$ and $\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \subseteq \mathrm{d}\right]$ and $\left.\mathrm{P}(\mathrm{X})\right]$
【（1）］$=\lambda$ d．$\exists \mathrm{X}\left[{ }^{*} \operatorname{backpack}(\mathrm{X})\right.$ and $\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \subseteq \mathrm{d}\right]$ and
$\forall y \sqsubseteq(J \cup M)\left[y \in C \rightarrow \exists x \subseteq X\left[x \in C\right.\right.$ and $\left.\left.{ }^{* *} \operatorname{carry}(x)(y)\right]\right]$ and
$\forall x \sqsubseteq\left[x \in C \rightarrow \exists y \sqsubseteq(J \cup M)\left[y \in C\right.\right.$ and $\left.\left.\left.{ }^{* *} \operatorname{carry}(x)(y)\right]\right]\right]$
$\llbracket(36) \rrbracket=\llbracket$ yíyàng $\rrbracket(\llbracket 1 \rrbracket)=1$ iff：

Consider a scenario in which John and Mary each carry only one backpack（e．g． （26））．Intuitively，（9）is true in such a scenario iff the backpack carried by John and that by Mary weigh the same．With the natural assumption that the cover C in （37）contains J，M，the backpack J carries，and the backpack M carries，the derived truth conditions say that the degree that contains only the weight of the backpack J carries and that of the backpack M carries has subparts mutually equivalent．

11．（9）also carries an interpretation that may render it true in a scenario in which，for instance， John carries two backpacks each of which weighs 10kgs and Mary carries two each of which weighs 5kgs．Such a＂double distributive＂interpretation may be derived with two applications of＊and a cover C containing J，M and each individual backpack carried by J or M（see the LF in（i））．
（i）［JひM $\left[\left[{ }^{*}-C\right]\left[1\left[y i ́ y a ̀ n g / g l e i c h ~\left[7\left[\left[_{D P} \exists\left[\left[{ }^{*}-C\right]-\left[d_{7}\right.\right.\right.\right.\right.\right.\right.\right.$ heavy $]$ backpacks $\left.]\right]\left[\left[{ }^{*}-C\right]\left[2\left[\mathrm{t}_{1}\right.\right.\right.$ carry $\left.\left.\left.\left.\left.\left.\left.t_{2}[]\right]\right]\right]\right]\right]\right]\right]$
12．For convenience and simplicity，I assume that the common noun bēibāo here is property－ denoting．With the view that Mandarin common nouns are kind－denoting，one only has to assume the type－shifting rules suggested in Chierchia（1998a；b）and Dayal（2004）for my analy－ sis to work．

This amounts to saying that the backpack J carries weighs the same as the one M carries.

4.2 Context sensitivity and covers

Intuitions to an adnominal RE, as already noted, become not so clear once objects in comparison are in large groups. It is worth to note that although most speakers consulted have find it difficult to judge (9) against the scenario (18), enrichment of contextual information or the change of verb, as already shown in (19) and (20), might make this task easier.
(18) John carries two backpacks a and b ; a weighs 10 kgs and b 15 kgs .

Mary carries two backpacks c and $\mathrm{d} ; \mathrm{c}$ weighs 10 kgs and d 5 kgs .
Through the discussion above, we have seen that a cover, a salient way how objects in the universe of discourse may be divided into groups, plays a crucial role in determining how the truth conditions derived may be satisfied in a given context of utterance. Covers are context-sensitive; it depends on the context of utterance and the nature of the property expressed by the predicate how a cover C divides objects in the universe of discourse into groups (Schwarzschild 1996). Given its context dependency, the source of vagueness and context sensitivity observed in an adnominal RE, I suggest, should be located in the cover the RE is interpreted against.

Consider first the default option for C , according to which C contains J, M and each individual backpack carried by J or M (i.e. $\{\mathrm{J}, \mathrm{M}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \subseteq \mathrm{C}$). The set of sums of degrees min operates on, in this case, contains those that have as their subparts the weight of some backpack(s) John carries and that of some backpack(s) Mary carries. Given the settings in (18), all the members in this set include as their subparts one of those in (38).
(38) $15 \mathrm{~kg} \sqcup 5 \mathrm{~kg}, 15 \mathrm{~kg} \sqcup 10 \mathrm{~kg}, 10 \mathrm{~kg} \sqcup 5 \mathrm{~kg}, 10 \mathrm{~kg}$

In this set, $\mathbf{1 0 k g}$ (i.e. $\mu_{\text {weight }}(\mathrm{b}) \sqcup \mu_{\text {weight }}(\mathrm{c})$) does not have any other member as its sub-parts; nevertheless, neither does $15 \mathrm{~kg} \sqcup 5 \mathrm{~kg}$ (i.e. $\mu_{\text {weight }}(\mathrm{a}) \sqcup \mu_{\text {weight }}(\mathrm{d})$). Applying min then is undefined, given that it fails to pick out the unique degree from this set that contains no other members as its subparts. Consequently, the truth conditions derived in (37) cannot be satisfied in the scenario (18), and therefore (9), with this option for C, cannot be true.

It seems that the only possibility for C that may render (9) true against (18) is to let it be, along the lines of Brisson (1998; 2003), an ill-fitting cover for the backpacks in this scenario. Being such a cover, C may contain the individual backpacks a and c but group b and d together with some random objects in the universe of discourse. With the theory of plural predication my proposal relies on,
this way of grouping renders the backpacks b and d escape from quantification introduced in plural predication and consequently only the weight of a and that of c may be seen in degree comparison. Suppose that $\{J, M, a, c,(b \sqcup d) \sqcup e\} \subseteq C$, where e is some random object in the universe of discourse. The truth conditions derived in (37), along these lines, may be satisfied in (18) in the following way: MIN operates on the set in (39) and picks out 10 kg , which is the sum of the weight of a and that of $c\left(\right.$ i.e. $\left.\mu_{\text {weight }}(a) \cup \mu_{\text {weight }}(c)\right)$.

(39) $\{\mathrm{d}: 10 \mathrm{~kg}$ Ød\}

The truth conditions in (37) then amount to saying that a and chave the same weight. On the other hand, given that the backpacks b and d escape from quantification, their weights (i.e. $\mu_{\text {weight }}(\mathrm{b})$ and $\mu_{\text {weight }}(\mathrm{d})$) are ignored.

Along with the idea presented above, the fact that (9) can be true in face of (18), like the non-maximality effect on a definite plural, is just an instance of tolerance of exceptions. Brisson (1998; 2003), who first suggests the idea of ill-fitting covers, attributes the non-maximality effect observed on a definite plural to the way objects in the universe of discourse are grouped. Consider (40); while (40a) may be true in a situation in which one of the students in the group did not participate in any raft building, (40b), for it to be true, requires all the members in the group to be involved in a raft-building activity.
(40) a. The students built a raft.
b. The students all built a raft.

This contrast, as noted by Brisson (1998; 2003), is observed no matter whether the intended reading is collective or distributive. ${ }^{13}$ Brisson employs the idea of goodfitting vs. ill-fitting covers to account for this contrast. Along with the ontology employed above, good-fitting and ill-fitting covers may be defined as below.
(41) Let P be a set, and $\sqcup \mathrm{P}$ be the sum that contains all elements in P as its subparts, and C be a cover for P ,
a. $\quad C$ is a good-fitting cover for P if $\sqcup(\{x: x \in C$ and $x \sqsubseteq(\sqcup P)\})=(\sqcup P)$;
b. $\quad \mathrm{C}$ is an ill-fitting cover for P if $\sqcup(\{\mathrm{x}: \mathrm{x} \in \mathrm{C}$ and $\mathrm{x} \subseteq(\sqcup \mathrm{P})\}) \sqsubset(\sqcup \mathrm{P})$.

Suppose that the extension of the students contains four individuals John, Bill, Tom, and Mary, and the universe of discourse additionally includes some nonstudent individual e. The cover in (42a), with the definition in (41), is a goodfitting cover for the atomic individuals contained in the extension of the students: all the members in this cover that are also part of the sum of all the students

[^9]exhaust the extension of the students. On the other hand, the cover in (42b) is an ill-fitting cover, given that Bill and Tom are grouped with the non-student individual e.
(42) a. $\{J, B \sqcup M, T, e\}$
b. $\{\mathrm{J}, \mathrm{M}, \mathrm{B} \sqcup \mathrm{T} \sqcup \mathrm{e}\}$

The presence of all, in Brisson's (1998; 2003) words, poses a requirement that the sentence where it occurs be interpreted with a good-fitting cover. Hence, maximality is forced in (40b). In contrast, without the presence of all, as in (40a), the cover involved may be an ill-fitting one; in this possibility, it could be the case that one student is grouped with some random non-student objects present in the universe of discourse (i.e. what Brisson (1998) called a junkpile, a term she attributes to Roger Schwarzschild), just like what we have seen in (42b), and hence escapes from universal quantification introduced via plural predication. Brisson identifies various factors that affect tolerance of exceptions; I refer the reader to her work for further discussion on this issue.

Back to the vagueness and context-sensitivity of the adnominal REs (9) observed in the scenario in (18). Compared to the default option, the possibility of C being ill-fitting for the backpacks is far from salient in an out-of-the-blue context. This provides an explanation why judgments on (9) in face of the scenario in (18) are often not clear unless the contextual information is enriched. (9) uttered out of the blue, the default value for C, according to which it contains each individual backpack in (18), renders the application of the operator min undefined. Therefore, speakers usually have difficulty judging (9) with respect to (18) and often do not consider it true in this scenario. Once enrichment of contextual information or the change of verb has made salient an ill-fitting cover that may render the derived truth conditions satisfied in the context of utterance, these examples then may be easily considered true by the speaker. After all, the saliency of a cover depends on the contextual information as well as the semantic nature of the predicate: in (19) and (20a), enrichment of the contextual information and the lexical meaning of the verb tīao 'pick' make salient the backpacks that weigh the same and consequently, in Brisson's (1998) term, render those that do not weigh the same salient enough to be ignored.

The analysis suggested above receives further support from the contrast between (9) and (43). (43) carries a meaning according to which it may be true in (18). Crucially, compared to (9), (43) is more likely to be judged true in face of the scenario in (18).
(43) Yuēhàn hé Mălì bēi-lė liǎng-gé yíyàng zhòng-dé bēibāo. John and Mary carry-PERF two-clf equally heavy-mod backpack 'John and Mary carry/carried two equally heavy backpacks.'

Along with the analysis I have suggested, the LF in (44a) may be assigned to (43); following Winter (1997), I assume that numeric indefinites are interpreted in situ with a choice function existentially closed at some propositional level (e.g. Reinhart 1997; Winter 1997; et al.). The truth conditions of these examples then are derived as in (44b). With the scenario in (18), the default value for C, which contains each of J, M, and the backpacks a, b, c, and d (i.e. \{J, M, a, b, c, d\} $\subseteq C$), suffices to render the truth conditions in (44b) satisfied: let the choice function f that verifies these truth conditions pick out the sum of the backpacks aபc; these truth conditions then amount to saying that there are two backpacks that weigh the same and are carried by J and M respectively.
 packs]]]]I]]]
b. $\llbracket \mathrm{DP} \rrbracket=\mathrm{f}\left(\lambda \mathrm{X}_{\mathrm{e}} \cdot|\mathrm{X}|=2\right.$ and $*$ backpacks (X) and $\left.\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]\right)$ 'the two backpacks selected by the function f each of which is d-heavy'
(abbreviated as: $\mathrm{f}\left(2{ }^{\star}{ }^{\star}\right.$ heavy $\left._{\mathrm{d}}{ }^{\star} \mathrm{bp}\right)$)
$\llbracket(44 a) \rrbracket=1$ iff there is a choice function f such that:
'There are two (specific) backpacks X each of which is carried by one of J and M, and each of J and M carries one of X, and the total weight of X has subparts that are mutually equivalent.'

The difference between (43) and (9) in their ease of being judged true in the face of (18) may then be attributed to the possibility of using the default value for C to satisfy their truth conditions: given that judgments for (43) can be made simply by appealing to the default value for C , it is expected that speakers find it easier to judge (43) than (9) in the face of scenario (18).

5. Amount REs

Additional assumptions on the syntax and semantics of Q-adjectives are in order to account for amount REs (10)-(11). It has been pointed out that modification
and predication with adjectives of quantity (henceforth, Q-adjectives; e.g. many and $f e w$) have been seen as involving degree semantics and measurement of quantity. In one approach along these lines, measurement of quantity is introduced via a functional head that co-occurs with a Q-adjective, whereas the semantic contribution of a Q-adjective is rather trivial (see, e.g. Rett (2008), Solt (2015), et al.). In the following, I adopt such an approach and shall work with Solt's (2015) analysis; this paper surely is not a suitable occasion for comparison of different analyses of Q-adjectives.

Solt (2015) assigns the lexical meaning (45a) to the Q-adjectives many/much. As she notes, once both arguments of many are saturated by a degree variable d and a set of degrees I, many, after λ-abstraction over d, returns the set of degrees I (see (45b)). ${ }^{14}$
a. $\llbracket m a n y / m u c h / d u \bar{\rho} \rrbracket=\lambda \mathrm{d}_{\mathrm{d}} \cdot \lambda \mathrm{I}_{\langle\mathrm{d}, \mathrm{t}\rangle} \cdot \mathrm{I}(\mathrm{d})$
b. $\quad[\lambda \mathrm{d} . \llbracket$ many $/ m u c h / d u \bar{o} \rrbracket(\mathrm{~d})(\mathrm{I})]=[\lambda \mathrm{d} . \mathrm{I}(\mathrm{d})]=\mathrm{I}$

Measurement of quantity, instead, is introduced by a separate functional head; in the discussion below, I present this functional head as Meas. Incorporating Dotlačil \& Nouwen's (2016) idea of degree plurality, the lexical meaning of this functional head may be presented as in (46); it maps an individual x to a degree d such that d contains as its subpart the quantity (i.e. cardinality or amount) of x .

$$
\begin{equation*}
\llbracket \text { Meas } \rrbracket=\lambda x_{e} \cdot \lambda d_{d} \cdot \mu_{\text {quantity }}(x) \sqsubseteq d \tag{46}
\end{equation*}
$$

Following Solt, I employ the compositional rule Degree Argument Introduction to resolve the type-mismatch between Meas and the NP it combines with.
(47) Degree Argument Introduction: (from Solt 2015, with slight modification) For any branching node α, whose daughters are β and γ, if $\llbracket \beta \rrbracket \in \mathrm{D}_{\langle e, t\rangle}$ and $\llbracket \gamma \rrbracket \in \mathrm{D}_{<\mathrm{e},<\mathrm{d}, \mathrm{t}\rangle}$, then $\llbracket \alpha \rrbracket=\left[\lambda \mathrm{d}_{\mathrm{d}} \cdot \lambda \mathrm{x}_{\mathrm{e}} . \llbracket \beta \rrbracket(\mathrm{x})\right.$ and $\left.\llbracket \gamma \rrbracket(\mathrm{x})(\mathrm{d})\right]$

Given these assumptions, the amount RE (10) may be assigned the LF (48). The RE morpheme yíyàng, just like in other RE constructions, undergoes raising and moves out of its containing DP at LF. The truth conditions of (10), along with the LF (48), are derived as in (49). ${ }^{15}$ With the natural assumption that C contains J, M, the sum of the cats J has, and the sum of the cats M has (i.e. $C \supseteq\{J, M$, the-cats-J-has, the-cats-M-has\}), min operates on the set of degrees that contain as their

[^10]subparts $\mu_{\text {quantity }}$ (the-cats-J-has) $\sqcup \mu_{\text {quantity }}$ (the-cats-M-has) and picks out $\mu_{\text {quantity }}$ (the-cats-J-has) $\sqcup \mu_{\text {quantity }}$ (the-cats-M-has).
(10) Yuēhàn hé Mălì yǎng-lė yíyàng duō-dė māo. John and Mary keep-Perf equally many-mod cat 'John and Mary have equally many cats.'
(48) Surface Structure: [J ${ }^{*} M^{* *}-C$-have $\left[_{D P} \exists\left[_{D^{\prime}}{ }^{*}-C\left[_{\text {MeasP }} \text { [yíyàng many }\right]\right]_{\text {Meas' }}\right.$ Meas cats $]]$] $]_{\mathrm{DP}}$]
LF:
[yíyàng [® 7 [$\left[d_{7}\right.$ many $]\left[{ }_{\odot} 5\left[\left[_{\mathrm{DP}} \exists\left[_{\mathrm{D}^{\prime}}{ }^{*}-\mathrm{C}\left[_{\text {MeasP }} d_{5} \mathrm{I}_{\text {Meas' }}\right.\right.\right.\right.\right.$ Meas cats $]]]]_{\mathrm{DP}}\left[1\left[\mathrm{H} \cdot M\left[{ }^{* *}-\mathrm{C}\right.\right.\right.$-have $\left.\left.\left.\left.\left.\left.\left.\left.\mathrm{t}_{1}\right]\right]\right]\right]\right]\right]\right]\right]$
(49) \llbracket Meas' $\rrbracket=\lambda d_{d} \cdot \lambda x_{e^{\prime}} \cdot \mu_{\text {quantity }}(x) \sqsubseteq d$ and ${ }^{*} \operatorname{cat}(x)$
(via DAI in (47))
\llbracket MeasP $\rrbracket=\lambda x_{e} \cdot \mu_{\text {quantity }}(\mathrm{x}) \sqsubseteq \mathrm{d}$ and ${ }^{*} \operatorname{cat}(\mathrm{x})$
$\llbracket D P \rrbracket=\lambda P_{<e, t>} . \exists \mathrm{X}\left[\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {quantity }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right.\right.$ and $\left.{ }^{*} \operatorname{cat}(\mathrm{x})\right]$ and $\left.\mathrm{P}(\mathrm{X})\right]$ \llbracket © $\rrbracket=\left[\lambda \mathrm{d}_{\mathrm{d}} \cdot \llbracket\right.$ many $\rrbracket(\mathrm{d})(\llbracket \subset \mathbb{)})=\llbracket \subset \rrbracket=\lambda \mathrm{d}$. $\exists \mathrm{X}\left[\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {quan }}\right.\right.$ tity $(x) \sqsubseteq d$ and $\left.{ }^{*} \operatorname{cat}(x)\right]$ and $\forall y \subseteq(J \cup M)\left[y \in C \rightarrow \exists x \sqsubseteq X\left[x \in C\right.\right.$ and ${ }^{* *}$ have $\left.\left.(x)(y)\right]\right]$ and $\forall x \sqsubseteq X\left[x \in C \rightarrow \exists y \sqsubseteq(J \cup M)\left[y \in C\right.\right.$ and ${ }^{* *}$ have $\left.\left.\left.(x)(y)\right]\right]\right]$ $\llbracket(10) /(48) \rrbracket=\llbracket$ yíyàng $\rrbracket(\llbracket$ (2) $\mathbb{)}=1 \mathrm{iff}$

'There is a group composed of John's and Mary's cats and the unique degree d that contains the quantity of John's cats and that of Mary's have subparts mutually equivalent.'

The truth conditions derived then assert that $\mu_{\text {quantity }}$ (the-cats-J-has) $\sqcup \mu_{\text {quantity }}$ (the-cats-Mary-has) has mutually equivalent subparts, which amounts to saying that the number of cats John has is exactly the same as the number of those Mary has.

In an amount RE, objects in comparison may be contributed by a nominal conjunction in object position, as we have seen in (11). Along with the assumptions above, the LF in (50) is assigned to (11).
(11) Yuēhàn yăng-lé yíàng dū̄-dė gǒu gēn māo. John keep-Perf equally many-mod dog and cat 'John has equally many dogs and cats.'
 and $\left[{ }_{\text {DP } 2} \exists\left[{ }^{*}-C\right]-\mathrm{C}_{\text {MeasP }} d_{5}[\right.$ Meas' Meas cats $\left.\left.\left.]\right]\right]\right]\left[1 J[* *-C]\right.$-have $\left.\left.\left.\left.\left.\left.\mathrm{t}_{1}\right]\right]\right]\right]\right]\right]$

In this LF, and conjoins two existential plural quantifiers each of which contains a functional head Meas, which introduces measurement of quantity. Here I take and to be intersective (see (51a); Partee \& Rooth 1983, Champollion 2016 and others); the nominal conjunction ConjP in (50) then is interpreted as in (51b). Some crucial steps of the calculation and the derived truth conditions are given in (52).
a. $\llbracket a n d \rrbracket=\lambda \mathrm{P}_{\langle\tau, t\rangle} \cdot \lambda \mathrm{Q}_{\langle\tau, \downarrow\rangle} \cdot \lambda \mathrm{x}_{\tau} \mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x}) \quad$ (τ is a semantic type)
b. $\llbracket \mathrm{DP}_{1 / 2} \rrbracket=\lambda \mathrm{P}_{<e, t>} \cdot \exists \mathrm{X}\left[\forall \mathrm{x} \subseteq \mathrm{X}\left[\mathrm{x} \in \mathrm{C} \rightarrow{ }^{*} \operatorname{dog} /{ }^{*} \operatorname{cat}(\mathrm{x})\right.\right.$ and $\left.\mu_{\text {quantity }}(\mathrm{x}) \subseteq \mathrm{d}\right]$ and $\mathrm{P}(\mathrm{X})$]
$\llbracket \mathrm{ConjP} \rrbracket=\lambda \mathrm{P}_{<e, t>} \llbracket \mathrm{DP}_{1} \rrbracket(\mathrm{P})$ and $\llbracket \mathrm{DP}_{2} \rrbracket(\mathrm{P})$
(52) Assuming that $\{\mathrm{J}$, the-dogs-J-has, the-cats-J-has $\} \subseteq C$,
\llbracket (2) $\rrbracket=\llbracket \subset \rrbracket=\lambda d_{d} \cdot \exists \mathrm{X}\left[\forall \mathrm{x}\left[\mathrm{x} \in \mathrm{C} \rightarrow \star \operatorname{dog}(\mathrm{x})\right.\right.$ and $\left.\mu_{\text {quantity }}(\mathrm{x}) \subseteq \mathrm{d}\right]$ and $\exists \mathrm{x} \subseteq \mathrm{X}[\mathrm{x} \in \mathrm{C}$
and ${ }^{* *}$ have $\left.(\mathrm{x})(\mathrm{J})\right]$ and $\left.\forall \mathrm{x} \subseteq \mathrm{X}[\mathrm{x} \in \mathrm{C} \rightarrow * * \operatorname{have}(\mathrm{x})(\mathrm{J})]\right]$ and $\exists \mathrm{Y}\left[\forall \mathrm{y}\left[\mathrm{y} \in \mathrm{C} \rightarrow{ }^{*} \operatorname{cat}(\mathrm{y})\right.\right.$ and $\left.\mu_{\text {quantity }}(\mathrm{y}) \sqsubseteq \mathrm{d}\right]$ and $\exists \mathrm{y} \subseteq \mathrm{Y}\left[\mathrm{y} \in \mathrm{C}\right.$ and ${ }^{* *}$ have $\left.(\mathrm{y})(\mathrm{J})\right]$ and $\forall \mathrm{y} \subseteq \mathrm{Y}[\mathrm{y} \in \mathrm{C}$
$\rightarrow *$ have(y)(J)]]
$\llbracket(50) \rrbracket=\llbracket y i ́ y a ̀ n g \rrbracket(\llbracket$ (2) $\rrbracket)=1 \mathrm{iff}$

$\cong \forall \mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime} \sqsubseteq \min \left(\lambda \mathrm{d} .\left(\mu_{\text {quantity }}(\right.\right.\right.$ the-dogs-J-has $) \sqcup \mu_{\text {quantity }}($ (the-cats-J-has $) \subseteq$ d $)$

$$
\left.\rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]
$$

'There is a group composed of the dogs John has and the cats he has, and the unique degree d that contains all and only the number of John's cats and that of his dogs have subparts mutually equivalent.'

In these truth conditions, min picks out $\mu_{\text {quantity }}$ (the-dogs-J-has) $\sqcup \mu_{\text {quantity }}$ (the-cats-J-has). These truth conditions hence amount to saying that the number of dogs John has is the same as the number of cats he has.

6. On reciprocal inequatives

The idea for REs can be extended to reciprocal inequatives. Intuitively, (53) and its German counterpart (54) express that John's height and Mary's are unequal.
(53) Yuēhàn hé Mălì bù-yíyàng zhòng.

John and Mary neg-equally heavy
'John and Mary are unequally heavy.'
(54) Hans und Maria sind unterschiedlich schwer.

John and Maria are unequally heavy
'John and Maria are unequally heavy.'
Along with the analysis suggested above, the Mandarin reciprocal inequative morpheme bù-yíyàng (and its German counterpart unterschiedlich) may be assigned the lexical meaning in (55).

$$
\begin{equation*}
\llbracket b u ̀-y i ́ y a ̀ n g \rrbracket=\lambda \mathrm{D}_{<\mathrm{d}, \mathrm{t}}^{\prime} \cdot \neg \forall \mathrm{d}, \mathrm{~d}^{\prime}\left[\mathrm{d}, \mathrm{~d}^{\prime} \sqsubseteq \operatorname{miN}\left(\mathrm{D}^{\prime}\right) \rightarrow \mathrm{d}=\mathrm{d}^{\prime}\right] \tag{55}
\end{equation*}
$$

Bù-yíyàng expresses the negation of yíyàng; the reciprocal inequative morpheme, just like the RE one, operates on a set of degree pluralities. At LF, it also moves out of its base-generation position. With these assumptions, the truth conditions of (53) are derived as in (56). Let C contain the individuals J and M, the truth conditions derived in (56b) say that not all the subparts of the minimal degree plurality that contains the weight of John and that of Mary are equivalent.
a. LF: [bù-yíyàng [7 [Jট M [$\left[{ }^{*}-C\right]\left[d_{7}\right.$ heavy $\left.\left.\left.\left.]\right]\right]\right]\right]$
b. $\llbracket b u ̀-y i ́ y a ̀ n g \rrbracket\left(\lambda d . \forall \mathrm{x}\left[\mathrm{x} \subseteq(\mathrm{J} \cup \mathrm{M})\right.\right.$ and $\left.\left.\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \sqsubseteq \mathrm{d}\right]\right)=1$ iff
$\neg \forall \mathrm{d}, \mathrm{d}^{\prime}\left[\mathrm{d}, \mathrm{d}^{\prime} \subseteq \min \left(\lambda \mathrm{d} . \forall \mathrm{x}\left[\mathrm{x} \subseteq(\mathrm{J} \sqcup \mathrm{M})\right.\right.\right.$ and $\left.\left.\left.\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {weight }}(\mathrm{x}) \subseteq \mathrm{d}\right]\right) \rightarrow \mathrm{d}=\mathrm{d}^{\prime}\right]$
'Not all the subparts of the unique degree d that contains all and only John's weight and Mary's weight are mutually equivalent.'

These truth conditions amount to saying that $\mu_{\text {weight }}(\mathrm{J}) \neq \mu_{\text {weight }}(\mathrm{M})$, that the weight of John and that of Mary are not equivalent. ${ }^{16}$

[^11]Schwarz (2007) presents an interesting example of reciprocal inequative. The German example in (57) can be interpreted in multiple ways. In one (call it Reading 1), it says that the total weight of the apples and that of the plums are different; in another (call it Reading 2), it says that for every piece of fruit x in the pile that is composed of the apples and the plums, x weighs differently from other pieces of fruit in the same pile.
(57) [Die Äpfel und die Pflaumen] sind [unsterschiedlich schwer] the apples and the plums are unequally heavy 'The apples and the plums are unequally heavy.'

Neither of these readings, however, are of interest here. The reading Schwarz is concerned with (call it Reading 3) may be paraphrased as follows: for each apple x and each plum y, x and y weigh differently, and it is left open whether each piece of fruit weighs differently from all the others. A scenario in which (57) may be true on this reading is given in (58).
(58) There are two apples a and b and three plums c, d, and e. The apples a and b each weigh 150 g , and the plums c , d and e each weigh 100 g .

In this scenario, (57) cannot be true on either Reading 1 or Reading 2. To my ear, the Mandarin counterpart (59) of (57) may be true in this scenario as well, which suggests that just like its German counterpart, it may be true on Reading 3.
(59) zhè-xīe pínggŭo hé zhè-xīe lǐzi bù-yíyàng zhòng. this- CLF $_{\mathrm{PL}}$ apple AND this- $\mathrm{CLF}_{\mathrm{PL}}$ plum NEG-equally heavy 'These apples and these plums are unequally heavy.'

Along with the proposal laid out above, Reading 3 may be delivered via the lexical meaning of the reciprocal inequative morpheme in (55) together with two applications of the Distribution operation *. Consider the LF in (60a) and the truth conditions derived in (60b). Let C_{1} be a cover that include all the pairs formed with an apple and a plum and C_{2} be a cover that contains each individual piece of fruit (see (61)).

[^12](i) Yuēhàn hé Mălì bēi-lè bù-yíyàng zhòng-dé bēibāo. John and Mary carry-Perf neg-equally heavy-mod backpack 'John and Mary carried/carry unequally heavy backpacks.'
(60) a. [the-apples-and-the-plums [${ }^{*}-C_{1}\left[1\left[\right.\right.$ bù-yíyàng $\left[7\left[\mathrm{t}_{1}\left[{ }^{*}-C_{2}\left[d_{7}\right.\right.\right.\right.$ heavy $\left.\left.\left.\left.\left.\left.\left.]\right]\right]\right]\right]\right]\right]\right]$
b. $\forall \mathrm{x} \sqsubseteq(\mathrm{A}-\mathrm{P})\left[\mathrm{x} \in \mathrm{C}_{1} \rightarrow \neg \forall \mathrm{~d}^{\prime} \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime} \sqsubseteq \mathrm{min}\left(\lambda \mathrm{d} . \forall \mathrm{y} \subseteq \mathrm{x}\left[\mathrm{y} \in \mathrm{C}_{2}\right.\right.\right.\right.$
$\left.\left.\left.\left.\rightarrow \mu_{\text {weight }}(\mathrm{y}) \sqsubseteq \mathrm{d}\right]\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]\right]$
'For all the apple-pear pairs x made from the pile of apples and the pile of pears in question, the subparts of the unique degree d that contains the weight of each piece of fruit in x are not mutually equivalent.'
\[

$$
\begin{align*}
& \mathrm{C}_{1}=\{\mathrm{a} \sqcup \mathrm{c}, \mathrm{a} \sqcup \mathrm{~d}, \mathrm{a} \sqcup \mathrm{e}, \mathrm{~b} \sqcup \mathrm{c}, \mathrm{~b} \sqcup \mathrm{~d}, \mathrm{~b} \sqcup \mathrm{e}\} ; \tag{61}\\
& \mathrm{C}_{2}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}
\end{align*}
$$
\]

The derived truth conditions (60b) then say that for all the pairs that contain an apple x and a plum y, x and y weigh differently. This amounts to saying that for every apple x and every plum y, x weighs differently from y. Reading 3 hence is captured.

Reading 2 from (57) and (59) may be derived in the same fashion: with the LF in (60a) and the truth conditions in (60b), keep C_{2} as it is in (61) and let C_{1} contain any pairs of pieces of fruit (see (62)); the derived truth conditions (60b) then say that for any pairs of fruit x and y, x weighs differently from $y .{ }^{17}$

$$
\begin{equation*}
\mathrm{C}_{1}=\{\mathrm{a} \sqcup \mathrm{~b}, \mathrm{a} \sqcup \mathrm{c}, \mathrm{a} \sqcup \mathrm{~d}, \mathrm{a} \sqcup \mathrm{e}, \mathrm{~b} \sqcup \mathrm{c}, \mathrm{~b} \sqcup \mathrm{~d}, \mathrm{~b} \sqcup \mathrm{e}, \mathrm{c} \sqcup \mathrm{~d}, \mathrm{c} \sqcup \mathrm{e}, \mathrm{~d} \sqcup \mathrm{e}\} \tag{62}
\end{equation*}
$$

This amounts to saying that for every x such that x is a piece of fruit in the relevant pile, x differs from other pieces in the same pile.

7. The alternative analysis

The analysis of REs I have proposed is developed from the idea of degree plurality; to see the advantage of incorporating plurality in degree semantics in face of the data discussed above, a comparison of my proposal with one not relying on such an idea might be necessary.

To my knowledge, Schwarz (2007) is the first to provide a detailed investigation and a formal analysis of this degree construction. Building on the assumption that a gradable predicate such as heavy relates a degree d and an individual x in the way that x's weight at least reaches d, Schwarz suggests that the German RE morpheme gleich relates a gradable property R and a plural individual X and asserts that all the relevant subparts of X have the same degree with respect to R .

[^13]a. $\llbracket s c h w e r / h e a v y \rrbracket=\lambda \mathrm{d}_{\mathrm{d}} \cdot \lambda \mathrm{x}_{\mathrm{e}} \cdot \mu_{\text {weight }}(\mathrm{x}) \geq \mathrm{d}$
b. 【gleich】 $=\lambda \mathrm{R}_{<\mathrm{d},<\mathrm{e}, \mathrm{t} \gg} \cdot \lambda \mathrm{X}_{\mathrm{e}}: \neg \operatorname{AtOM}(\mathrm{X}) . \forall \mathrm{x}, \mathrm{y} \subseteq \mathrm{X}[\mathrm{x} \neq \mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{C} \rightarrow$ $\{\mathrm{d}: \mathrm{R}(\mathrm{d})(\mathrm{x})\}=\{\mathrm{d}: \mathrm{R}(\mathrm{d})(\mathrm{y})\}]$

In (63b), C is a contextual restriction that plays a role very similar to Schwarzschild's (1996) cover. The truth conditions in (64) then are derived for (4): with the natural assumption that C contains the individuals Hans and Maria, these truth conditions say that the weight of Hans is equivalent to that of Maria.
(64) $\llbracket[$ Hans and Maria] are [gleich heavy] $\rrbracket=1$ iff
$\forall \mathrm{x}, \mathrm{y} \sqsubseteq(\mathrm{H} \sqcup \mathrm{M})\left[\mathrm{x} \neq \mathrm{y}\right.$ and $\left.\mathrm{x}, \mathrm{y} \in \mathrm{C} \rightarrow\left\{\mathrm{d}: \mu_{\text {weight }}(\mathrm{x}) \geq \mathrm{d}\right\}=\left\{\mathrm{d}: \mathrm{d}: \mu_{\text {weight }}(\mathrm{y}) \geq \mathrm{d}\right\}\right]$
'The set of degrees d such that Hans is at least d-heavy is the same as the set of degrees d' such that Maria is d'-heavy.'

In this analysis, a RE morpheme may but need not undergo LF-movement, though in certain circumstances such movement is obligatory. One such case is the amount RE. ${ }^{18}$ Assuming that in (65) C contains the group of the pets Hans has and that of the pets Maria has, the derived truth conditions amount to saying that the number of the pets Hans has is the same as that of those Maria has.
$\llbracket\left[H \& M\left[\right.\right.$ gleich $\left[1\left[{ }^{* *}\right.\right.$ have $\left[\exists\left[\left[d_{1}\right.\right.\right.$ many $]{ }^{*}$ cat $\left.\left.\left.\left.\left.]\right]\right]\right]\right]\right] \rrbracket=1$ iff
$\forall \mathrm{x}, \mathrm{y} \sqsubseteq(\mathrm{H} \sqcup \mathrm{M})[\mathrm{x} \neq \mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{C} \rightarrow$
$\left\{\mathrm{d}: \exists \mathrm{Z}\left[{ }^{*} \operatorname{pet}(\mathrm{Z})\right.\right.$ and $|\mathrm{Z}| \geq \mathrm{d}$ and $\left.\left.{ }^{* *} \operatorname{have}(\mathrm{Z})(\mathrm{x})\right]\right\}=$
$\left\{\mathrm{d}: \exists \mathrm{Z}\left[{ }^{*} \operatorname{pet}(\mathrm{Z})\right.\right.$ and $|\mathrm{Z}| \geq \mathrm{d}$ and $\left.\left.\left.{ }^{* *} \operatorname{have}(\mathrm{Z})(\mathrm{y})\right]\right\}\right]$
'The set of degrees d such that Hans has at least d-many pets is the same as the set of degrees d^{\prime} such that Maria has at least d'-many pets.'

The vagueness observed in an adnominal RE , in this analysis, is taken to be an instance of scope ambiguity. Given that the movement of gleich at LF is optional, the German counterpart of the adnominal RE (9) may be parsed in two different ways: in one, gleich stays in situ, as shown in (66a); in the other, gleich moves out of its containing DP, as shown in (67a).
18. Schwarz's (2007) analysis of amount REs correctly predicts the ungrammaticality of (i).
(i) *Hans hat gleich viele Haustiere.

Hans has equally many pets
Furthermore, as he notes, having gleich interpreted in situ in an amount RE, in his analysis, results in the truth conditions that further lead to the wrong prediction that Hans and Maria have equally many cats entails Hans and Maria have equally many pets. Schwarz suggests that the obligatory movement of the RE morpheme may be explained if it is assumed that many is a parameterized determiner and hence is of type <d, <<e, t>, <<e, t>, t>>> (see Hackl (2000)). I refer the reader to Schwarz (2007) for details.
a. LF 1: [H\&M [**carry [\exists [[gleich heavy] *backpacks]]]]
b. $\llbracket(66 a) \rrbracket=1$ iff $\exists Z\left[{ }^{*} \operatorname{bp}(Z)\right.$ and ${ }^{* *} \operatorname{carry}(Z)(H \& M)$ and
$\forall x, y \sqsubseteq Z[x, y \in C$ and $x \neq y \rightarrow$
$\left.\left.\left\{\mathrm{d}: \mu_{\text {weight }}(\mathrm{x}) \geq \mathrm{d}\right\}=\left\{\mathrm{d}: \mu_{\text {weight }}(\mathrm{y}) \geq \mathrm{d}\right\}\right]\right]$
a. LF 2: $\left[H \& M\left[\right.\right.$ gleich $\left[1\left[* *\right.\right.$ carry $\left[\exists\left[\left[d_{1}\right.\right.\right.$ heavy $]$ *backpacks $\left.\left.\left.\left.\left.]\right]\right]\right]\right]\right]$
b. $\llbracket(67 a) \rrbracket=1$ iff $\forall x, y \sqsubseteq(H \sqcup M)[x, y \in C$ and $x \neq y \rightarrow$
$\left\{\mathrm{d}: \exists \mathrm{Z}\left[{ }^{*} \mathrm{bp}(\mathrm{Z})\right.\right.$ and ${ }^{* *} \operatorname{carry}(\mathrm{Z})(\mathrm{x})$ and $\left.\left.\mu_{\text {weight }} \geq \mathrm{d}\right]\right\}=$
$\left\{\mathrm{d}: \exists \mathrm{Z}\left[* \operatorname{bp}(\mathrm{Z})\right.\right.$ and ${ }^{* *} \operatorname{carry}(\mathrm{Z})(\mathrm{y})$ and $\left.\left.\left.\mu_{\text {weight }} \geq \mathrm{d}\right]\right\}\right]$
As Schwarz (2007) notes, these two LF representations, in a context in which Hans and Maria each carry just one backpack, lead to the same prediction: assuming that C in (66a) contains each of the backpacks Hans or Maria carries respectively and on the other hand that in (67a) contains the individuals Hans and Maria, these two sets of truth conditions both predict that (the German counterpart of) (9) is true iff the backpacks they carry weigh the same. ${ }^{19}$ Nevertheless, in face of the scenario in (18), where Hans and Maria each carry two backpacks, these two representations lead to the different predictions: while (66b) predicts that (9) is true against this scenario, (67b) predicts that it is false. Schwarz (2007) reports that the German counterpart of (9) intuitively can be true or false in this scenario and hence concludes that both analyses make the correct predictions.

Promising as it might initially seem to be, Schwarz's (2007) analysis suffers from several problems some of which are already noted by him himself. One of them has to do with universal REs like (14)-(16). ${ }^{20}$ As Schwarz notes himself, it is unclear how such cases may be addressed in his analysis. Another challenge comes from examples like (11), where objects in comparison of quantity are contributed by the nominal conjunction in object position. As noted above, in an amount RE, a RE morpheme, in Schwarz's settings, must move out of the containing DP. Nevertheless, having the RE morpheme interpreted DP-externally in these cases wrongly predicts that (11) is unacceptable for the reason why ${ }^{\star}$ John has equally many dogs is, given that in this analysis, gleich operates on a singular individual in both cases. Furthermore, to the extent that the observations presented in $\S 1.2$ are accurate, it seems left unexplained how the context of utterance may influence a speaker's intu-

[^14]ition around an adnominal RE. To be more specific, it is unclear in this analysis how enrichment of contextual information or the change of verb favors one scope possibility over another so that difficulty in judgment making may be ameliorated in a given context of utterance.

8. Conclusion

In the discussion above, I have offered an account for reciprocal degree constructions; the proposal dwells on the idea of degree plurality, according to which mechanisms governing plural formation and plural predication play a crucial role in degree syntax and semantics; to the extent that the proposal is on the right track, it provides support for this idea from degree constructions other than comparatives with quantifiers in the than-clause. Furthermore, in the analysis I have suggested, the vague intuition one might have for an adnominal RE is taken to be the result from the same contextual factors that lead to vagueness observed in plural predication; to the extent that this analysis is on the right track, it then reveals the intricate interaction between plurality in the domains of degrees and that in the domain of individuals.

Dotlačil \& Nouwen's (2016) idea of building in plurality in degree semantics makes use of the summation operation \sqcup and the pluralization operators * and ${ }^{* *}$; crucially, they encode the part-of relation \subseteq in the lexical meaning of a gradable predicate and take it to be a relation between degrees d and individuals x such that the degree x possesses is part of d . In another variant along with this approach, the idea of "degree plurality" is cashed out via the interval-based semantics of degrees (Schwarzschild \& Wilkinson 2002; Heim 2006; Beck 2010, 2014; et al.), according to which a gradable predicate denotes a relation between sets of degrees and individuals (see e.g. (68)).

$$
\begin{equation*}
\llbracket \text { tall } \rrbracket=\lambda \mathrm{D}_{\langle\mathrm{d}, \mathrm{t}} \cdot \lambda \mathrm{x}_{\mathrm{e}} \cdot \mu_{\text {height }}(\mathrm{x}) \in \mathrm{D} \tag{68}
\end{equation*}
$$

As far as I can see, the account I have suggested for reciprocal equatives may be easily adapted to this variant. In order to do so, one need only assume the lexical meaning in (69) for the RE morpheme. Ceteris paribus, the truth conditions in (69c) are derived, which also amount to saying that John's height and Mary's are equivalent.
a. $\quad \llbracket$ yíyàng $\rrbracket=\lambda D_{\ll \mathrm{d}, \mathrm{t}, \mathrm{t}} \cdot \forall \mathrm{d}, \mathrm{d}^{\prime}\left[\mathrm{d}, \mathrm{d}^{\prime} \in \min (D) \rightarrow \mathrm{d}=\mathrm{d}^{\prime}\right]$
b. For any $D_{\langle<d, t\rangle, t>} \operatorname{MIN}(D)=\iota \mathrm{D}\left[D(\mathrm{D})\right.$ and $\neg \exists \mathrm{D}^{\prime}\left[D\left(\mathrm{D}^{\prime}\right)\right.$ and $\left.\left.\mathrm{D} \subset \mathrm{D}^{\prime}\right]\right]$; undefined otherwise.
c. $\llbracket\left[\right.$ yíyàng [7[J\&M[[* C] $\left[{ }_{\mathrm{AP}} D_{7}\right.$ tall $\left.\left.\left.\left.\left.]\right]\right]\right]\right]\right]=1$ iff
$\forall d, d^{\prime}\left[\mathrm{d}, \mathrm{d}^{\prime} \in \operatorname{MIN}\left(\lambda \mathrm{D} . \forall \mathrm{x} \subseteq(\mathrm{J} \sqcup \mathrm{M})\left[\mathrm{x} \in \mathrm{C} \rightarrow \mu_{\text {height }}(\mathrm{x}) \in \mathrm{D}\right) \rightarrow \mathrm{d}=\mathrm{d}^{\prime}\right]\right]$, where $\{J, M\} \subseteq C$

The comparison between these two variants should lie somewhere else. Further discussion on this issue is outside the scope of this paper; readers interested are referred to Dotlačil \& Nouwen (2016) for further discussion.

Acknowledgements

I sincerely thank the anonymous reviewers of Language and Linguistics and audiences in SALT 27, WCCFL 35 and the colloquium in National Chiao-Tung University, Hsinchu in January, 2018 for inspiring discussion and suggestions. All errors are mine.

This project is supported by MOST Grants from Taiwan (MOST 105-2410-H-007-060 and MOST 106-2410-H-007-037).

Abbreviations

CLF	classifier	PL	plural
COMP	comparative marker	PROG	progressive
MOD	modification marker	PTCP	participle
NEG	negation	RE	Reciprocal Equative
PERF	perfective		

References

Alrenga, Peter \& Kennedy, Christopher. 2014. No more shall we part: Quantifiers in English comparatives. Natural Language Semantics 22(1). 1-53. https://doi.org/10.1007/s11050-013-9099-4
Barwise, Jon \& Cooper, Robin. 1981. Generalized quantifiers and natural language. Linguistics and Philosophy 4(2). 159-219. https://doi.org/10.1007/BFoo350139
Beck, Sigrid. 2000. The semantics of different: Comparison operator and relational adjective. Linguistics and Philosophy 23(2). 101-139. https://doi.org/10.1023/A:1005566722022
Beck, Sigrid. 2001. Reciprocals are definites. Natural Language Semantics 9(1). 69-138. https:// doi.org/10.1023/A:1012203407127
Beck, Sigrid. 2010. Quantifiers in than-clauses. Semantics and Pragmatics 3. 1-72. (Article 1.) https://doi.org/10.3765/sp.3.1
Beck, Sigrid. 2013. Lucinda driving too fast again - The scalar properties of ambiguous than-clauses. Journal of Semantics 30(1). 1-63. https://doi.org/10.1093/jos/ffro11
Beck, Sigrid. 2014. Plural predication and quantified 'than'-clauses. In Crnič, Luka \& Sauerland, Uli (eds.), The art and craft of semantics: A festschrift for Irene Heim, vol. 1 (MITWPL 70), 91-115. Cambridge: MIT Working Papers in Linguistics.

Brisson, Christine M. 1998. Distributivity, maximality, and floating quantifiers. New Brunswick: Rutgers, The State University of New Jersey. (Doctoral dissertation.)
Brisson, Christine M. 2003. Plurals, all, and the nonuniformity of collective predication. Linguistics and Philosophy 26(2). 129-184. https://doi.org/10.1023/A:1022771705575
Champollion, Lucas. 2016. Ten men and women got married today: Noun coordination and the intersective theory of conjunction. Journal of Semantics 33(3). 561-622. https://doi.org /10.1093/jos/ffvoo8
Chao, Yuen Ren. 1968. A grammar of spoken Chinese. Berkeley: University of California Press.
Chen, Liping. 2005. Dou-(dis)harmony in Chinese. In Bateman, Leah \& Ussery, Cherlon (eds.), NELS 35: Proceedings of the Thirty-Fifth Annual Meeting of the North East Linguistic Society, vol. 1, 127-142. Amherst: GLSA, University of Massachusetts at Amherst.
Chen, Liping. 2008. Dou: Distributivity and beyond. New Brunswick: Rutgers University. (Doctoral dissertation.)
Cheng, Lisa Lai-Shen. 1995. On dou-quantification. Journal of East Asian Linguistics 4(3). 197-234. https://doi.org/10.1007/BFo1731509
Chierchia, Gennaro. 1998a. Plurality of mass nouns and the notion of "semantic parameter". In Rothstein, Susan (ed.), Events and grammar (Studies in Linguistics and Philosophy 70), 53-103. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-011-3969-4_4
Chierchia, Gennaro. 1998b. Reference to kinds across language. Natural Language Semantics 6(4). 339-405. https://doi.org/10.1023/A:1008324218506
Dayal, Veneeta. 2004. Number marking and (in)definiteness in kind terms. Linguistics and Philosophy 27(4). 393-450. https://doi.org/10.1023/B:LING.0000024420.80324.67
Dotlačil, Jakub \& Nouwen, Rick. 2016. The comparative and degree pluralities. Natural Language Semantics 24(1). 45-78. https://doi.org/10.1007/s11050-015-9119-7
Fitzgibbons, Natalia \& Sharvit, Yael \& Gajewski, Jon. 2008. Plural superlatives and distributivity. In Friedman, Tova \& Ito, Satoshi (eds.), Proceedings of the 18th Semantics and Linguistic Theory Conference (SALT 18), 302-318. Ithaca: Cornell University.
Gajewski, Jon. 2002. On analyticity in natural language. Cambridge: MIT. (Manuscript.) (https://jon-gajewski.uconn.edu/wp-content/uploads/sites/1784/2016/08/analytic.pdf) (Accessed 2020-09-01.)
Hackl, Martin. 2000. Comparative quantifiers. Cambridge: MIT. (Doctoral dissertation.)
Heim, Irene. 2006. Little. In Gibson, Masayuki \& Howell, Jonathan (eds.), Proceedings of the 16th Semantics and Linguistic Theory Conference (SALT 16), 35-58. Ithaca: Cornell University.
Heim, Irene \& Kratzer, Angelika. 1998. Semantics in generative grammar. Oxford: Blackwell.
Huang, Shi-Zhe. 1996. Quantification and predication in Mandarin Chinese: A case study of dou. Philadelphia: University of Pennsylvania. (Doctoral dissertation.)
Križ, Manuel. 2016. Homogeneity, non-maximality, and all. Journal of Semantics 33(3). 493-539. https://doi.org/10.1093/jos/ffvoo6
Lasersohn, Peter. 1999. Pragmatic halos. Language 75(3). 522-551. https://doi.org/10.2307/417059
Lee, Thomas Hun-Tak. 1986. Studies on quantification in Chinese. Los Angeles: University of California, Los Angeles. (Doctoral dissertation.)
Lin, Jo-wang. 1998. Distributivity in Chinese and its implications. Natural Language Semantics 6(2). 201-243. https://doi.org/10.1023/A:1008299031574
Lin, Jo-wang. 2014. The adjective of quantity duo 'many/much' and differential comparatives in Mandarin Chinese. International Journal of Chinese Linguistics 1(2). 163-191. https://doi .org/10.1075/ijchl.1.2.01lin

Link, Godehard. 1983. The logical analysis of plurals and mass terms: A lattice-theoretical approach. In Bäuerle, Rainer \& Schwarze, Christoph \& von Stechow, Arnim (eds.), Meaning, use, and interpretation of language, 302-323. Berlin: Walter de Gruyter. https://doi.org /10.1515/9783110852820.302
Matushansky, Ora. 2008. More of the same. (Paper presented at GLOW 31, Newcastle upon Tyne, 26-28 March 2008.)
Paris, Marie-Claude. 2008. On parts of speech in Chinese: Gen. The Linguistic Review 25(3-4). 347-366.
Partee, Barbara H. \& Rooth, Mats. 1983. Generalized conjunction and type ambiguity. In Bäuerle, Rainer \& Schwarze, Christoph \& von Stechow, Arnim (eds.), Meaning, use, and interpretation of language, 361-383. Berlin: Walter de Gruyter. https://doi.org/10.1515/9783110852820.361
Reinhart, Tanya. 1997. Quantifier scope: How labor is divided between QR and choice functions. Linguistics and Philosophy 20(4). 335-397. https://doi.org/10.1023/A:1005349801431
Rett, Jessica. 2008. Degree modification in natural language. New Brunswick: Rutgers University. (Doctoral dissertation.)
Schwarz, Bernhard. 2007. Reciprocal equatives. In McNally, Louise \& Puig-Waldmüller, Estela (eds.), Proceedings of Sinn und Bedeutung 11, 568-582. Barcelona: Universitat Pompeu Fabra.
Schwarzschild, Roger. 1996. Pluralities (Studies in Linguistics and Philosophy 61). Dordrecht: Kluwer. https://doi.org/10.1007/978-94-017-2704-4
Schwarzschild, Roger \& Wilkinson, Karina. 2002. Quantifiers in comparatives: A semantics of degree based on intervals. Natural Language Semantics 10(1). 1-41. https://doi.org/10.1023 /A:1015545424775
Solt, Stephanie. 2015. Q-adjectives and the semantics of quantity. Journal of Semantics 32(2). 221-273. https://doi.org/10.1093/jos/ffto18
Sternefeld, Wolfgang. 1998. Reciprocity and cumulative predication. Natural Language Semantics 6(3). 303-337. https://doi.org/10.1023/A:1008352502939
Winter, Yoad. 1997. Choice functions and the scopal semantics of indefinites. Linguistics and Philosophy 20(4). 399-467. https://doi.org/10.1023/A:1005354323136

Author's address

I-Ta Chris Hsieh
Institute of Linguistics
National Tsing Hua University
No. 101, Sec. 2, Kuang-Fu Road
East District, Hsinchu 30013
Taiwan
ita.hsieh@mx.nthu.edu.tw

Publication history

Date received: 27 August 2018
Date accepted: 30 November 2018

[^0]: 1. For detailed discussion on this topic, see Beck (2010; 2014), Alrenga \& Kennedy (2014), Dotlačil \& Nouwen (2016) and references cited therein.
[^1]: 2. Throughout this paper, I gloss the Mandarin nominal coordinator hé/gēn as and, despite the fact they might have the same semantic contribution as English and in nominal coordination. As pointed out in some research (Chao 1968; Paris 2008; et al.), the coordinators may be ambiguous between a nominal conjunct coordinator or a comitative marker; in the latter case, hé/gēn and the nominal it precedes for a comitative adjunct. See also Footnote 9 for some relevant discussion.
[^2]: 3. The Mandarin counterpart of (12b) (see below), in some contexts, may carry an "anaphoric" interpretation; see Footnote 4. This interpretation is irrelevant to the discussion here.
[^3]: 5. See $\S 7$ for further discussion on this.
[^4]: 6. As noted in § 8, the proposal presented below may be easily adapted to other variants of the approach along with this idea.
[^5]: 7. It would be more appropriate to use different symbols to distinguish the semantic pluralization operators and the syntactic objects at LF that introduce them. Nevertheless, in order not to create confusion and be consistent with most literature cited here, I will use ${ }^{*}$ and ${ }^{* *}$ to refer to the relevant semantic operations as well as the syntactic operators that introduce them.
[^6]: 8. Here I take the combination of měi-NUM-CLF-N and dōu to be the counterpart of every; this is surely for convenience only. While there exist tremendous proposals for the semantic contribution of the particle dōu in Mandarin (e.g. Lee 1986; Cheng 1995; Huang 1996; Lin 1998; Chen 2005, 2008; et al.), the analysis I have proposed for REs is independent of these proposals and hence is compatible with any of them; given that in my analysis, the RE morpheme needs to move outside the scope of the elements that bring up the universal quantificational force and as shown in § 3.2, independent principles serve to cash out the plurality requirement, it has nothing to do with the proposed analysis for the RE morpheme per se how the semantics contribution of dōu may be characterized.
[^7]: 9. An anonymous reviewer, following Chao (1968), points out that a Mandarin predicative RE like (4) is syntactically ambiguous and may be parsed in two ways (see also Footnote 2). In one, hé is a nominal conjunction coordination and hence Yuēhàn hé Mălì is a nominal conjunction; in the other, hé is a comitative marker and together with Mălì forms a comitative adjunct that excludes Yuēhàn. The analysis I suggest for REs is not affected by such an ambiguity in any way, given that in my analysis, (i) the RE morpheme, e.g. in (4), scopes over Yuēhàn hé Mălì at LF, (ii) the RE morpheme operates on degrees rather than individuals. Hence the internal structure of the nominal coordination has no effect on how the RE morpheme makes its semantic contribution. Since such an syntactic ambiguity has no effect in semantic composition, there is no need to postulate two different lexical entries for the RE morpheme just because of this ambiguity.
[^8]: 10. An anonymous reviewer points out that (13b) becomes grammatical once a quantificational temporal adverb such as always/every year is added in.
 (i) Mălì yīzhí/měi.nián dōu yíyàng zhòng.

 Mary always/every.year all equally heavy
 To account for this example, one only needs to further relativize the lexical meaning of a gradable adjective to times, as shown in (ii.a). With the LF in (ii.b), the operator min then operates on the set of degree that contain as their subparts Mary's weight at various time points. In other words, (i) may be treated on a par with a universal RE and hence denotes the proposition in (ii.c)
 (ii) a. \llbracket heavy $\rrbracket^{W, t}=\lambda d_{d} \cdot \lambda x_{e} \cdot \mu_{\text {weight }}(\mathrm{w})(\mathrm{t})(\mathrm{x}) \subseteq \mathrm{d}$, where $\mu_{\text {weight }}(\mathrm{w})(\mathrm{x})$ is the weight of x at t in w
 b. LF: [yíyàng [7[always/every year $\left[\right.$ Mary d_{7}-tall $\left.\left.\left.]\right]\right]\right]$
 c. $\quad \lambda \mathrm{w} . \lambda \mathrm{t} . \forall \mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime}\left[\mathrm{d}^{\prime}, \mathrm{d}^{\prime \prime} \subseteq\right.$ min $\left.\left(\lambda \mathrm{d} . \forall \mathrm{t}^{\prime} \subseteq \mathrm{t}\left[\mu_{\text {weight }}(\mathrm{w})\left(\mathrm{t}^{\prime}\right)(\mathrm{M}) \sqsubseteq \mathrm{d}\right]\right) \rightarrow \mathrm{d}^{\prime}=\mathrm{d}^{\prime \prime}\right]$

[^9]: 13. For other analyses of this kind of contrast, see Lasersohn (1999), Križ (2016), and references cited therein.
[^10]: 14. See Lin (2014) for analyzing Mandarin dūo along the lines of Solt (2015).
 15. Following Solt (2015), I assume that many, after its degree argument is saturated, undergoes movement at LF out of its base-generation position in order to solve type-mismatch and leave a degree variable (e.g. in (49), d_{5}).
[^11]: 16. An anonymous reviewer claims that the analysis I have proposed for the Mandarin reciprocal inequative morpheme bù-yíyàng suggests that bù is a lexical negator and may be inconsistent with Chao's (1968) description that "A and B bù-yíyàng Adj" is the negation of "A and B yíyàng Adj". Note that my proposal for a predicative reciprocal inequative need not rely on the
[^12]: assumption that $b \grave{u}$ is a lexical negator. The truth conditions in (56b) can still be derived if it is assumed that $b \grave{u}$ is a sentential negator. Nevertheless, assuming that bù and the RE morpheme yíyàng together form a constituent provides a straightforward way to capture the meaning of an adnominal reciprocal inequative (see (i)) and need not appeal to any additional syntactic assumption. After all, there does not seem to be any motivation for seeing bù as a sentential negator in (i).

[^13]: 17. Reading 1 may be easily derived from the LF and the assumption that the cover $\mathrm{C} \supseteq\{$ theapples, the-oranges $\}$.
 (i) [bù-yíyàng $\left[7\left[\right.\right.$ the-apples-and-the-plums $\left[{ }^{\star}-C\left[d_{7}\right.\right.$ heavy $\left.\left.\left.\left.]\right]\right]\right]\right]$
[^14]: 19. Schwarz (2007) notes that the truth conditions in (67b) need to be accompanied with the existence presupposition that John and Mary carry backpacks in order to avoid the prediction that (9) may be true in a situation in which John and Mary do not carry any backpacks.
 20. As an anonymous reviewer points out, with Lin's (1998) analysis of měi-NUM-CLF+dūo, according to which měi-NUM-CLF is characterized semantically as a definite plural, Schwarz's (2007) analysis captures the interpretation of a Mandarin universal RE. Nevertheless, given the controversy on the semantic characterization of $d \bar{u} o$, as noted in Footnote 8 , my proposal has an advantage over Schwarz's in that it need not rely on any particular analysis of this particle.
