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This article investigates the evolutionary and spatial dynamics of typological 
characters in 117 Indo-European languages. We partition types of change (i.e., 
gain or loss) for each variant according to whether they bring about a simplifica-
tion in morphosyntactic patterns that must be learned, whether they are neutral 
(i.e., neither simplifying nor introducing complexity) or whether they introduce 
a more complex pattern. We find that changes which introduce complexity show 
significantly less areal signal (according to a metric we devise) than changes 
which simplify and neutral changes, but we find no significant differences be-
tween the latter two groups. This result is compatible with a scenario where cer-
tain types of parallel change are more likely to be mediated by advergence and 
contact between proximate speech communities, while other developments are 
due purely to drift and are largely independent of intercultural contact.
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1.	 Introduction

The differential stability of typological features (alternatively characters or traits, 
in terminology adopted from evolutionary biology) has long been a topic of in-
terest in linguistics. Linguists hypothesize that certain parts of a language’s gram-
matical system will show little change over time, while other features will change 
frequently (Sapir 1921; Meillet 1925; Martinet 1975). With a few exceptions, quan-
titative approaches to the study of typological stability either focus on synchronic 
distributions, with no explicit way of accounting for shared behavior due to ge-
netic inheritance, or are purely evolutionary in their scope, with geography and 
system-internal pressures playing no discernible role.
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It is well known that languages exhibit similarity due to a number of com-
peting forces, including shared inheritance, independent parallelism and contact 
(Nichols 2003; Aikhenvald 2007; Bickel 2011). The goals of this paper are twofold: 
we employ explicit phylogenetic and spatial models of linguistic evolution, and we 
use these models to investigate the evolutionary dynamics of typological features; 
in the case of features that are frequently in flux, we attempt to measure the possi-
bility as to whether parallel changes come about due to areal pressure as opposed 
to chance or universal tendencies. Essentially, we seek to tease apart drift (cf. Sapir 
1921; Yanovich 2016) and advergence (cf. Renfrew 2000; Chang et al. 2015), a 
phenomenon where diversifying languages, having split from a larger parent lan-
guage, undergo parallel changes, conceivably due not only to interactions between 
precursors of change in the parent language, but areal contact as well. Our goal is 
to probabilistically infer information regarding how typological features change 
during the course of evolution of a language family with a well-documented history 
and largely agreed-upon prehistory (the Indo-European languages) and whether, 
in the case of parallel changes, these changes co-occur in spatiotemporal proximity 
to each other (or to locations where the feature is present or absent). Our analysis 
incorporates (1) a phylogenetic model of character evolution, (2) a phylogeographic 
model of demographic dispersal and (3) a metric for measuring spatial dispersion. 
This allows us to estimate how areally sensitive parallel changes to typological fea-
tures are. We employ a large dataset of feature variants from several domains of 
morphosyntax, and we classify changes pertaining to these variants according to 
whether (by our account) they simplify a grammatical pattern (e.g., via the loss of 
a marked morphological structure, or by making morphology more transparent), 
render a pattern more complex (e.g., by introducing a morphosyntactic mismatch 
in marking, or increasing the number of elements in a clause that must be indexed 
by the verb) or are neutral in their complexity (e.g., by changing constituent order). 
We predict that changes which simplify are more areally concentrated than ‘neutral’ 
changes, our control group, and that neutral changes are more areally concentrated 
than changes which introduce complexity. While we do not find changes which 
simplify to be significantly more areally concentrated than neutral changes, we 
do find that changes which introduce complexity are significantly more areally 
dispersed than changes from the other two groups.

Our methodologies make a number of simplifying assumptions, and the pro-
cedure carried out in the paper serves largely as a proof of concept; however, it is 
hoped that the methods outlined in this paper will expand the possibilities of inves-
tigating interactions between genetic inheritance and areal contact in quantitative 
historical linguistics. A third, ancillary goal of this work is to help demystify some 
of the probabilistic models that have recently gained currency in our field. We hope, 
by making our methodology clear – and by making our code freely available – to 



	 Areal pressure in grammatical evolution	 3

add to the growing community of historical linguists developing tools for collab-
orative use, and to further the discussion on how to adapt tools from outside the 
field for linguistic use.

2.	 Previous literature

2.1	 Quantitative typology

The quantitative literature on typological stability can be roughly divided into two 
genres. Earlier scholarship tended to make use of basic descriptive statistics in or-
der to characterize the stability of, preference for, or dependence between features, 
based largely on their synchronic distributions (cf. Nichols 1986; Dryer 1989).

More recently, researchers utilizing tools and insights from computational bi-
ology have investigated the evolution of typological characters using an explicitly 
phylogenetic model. These and other graphical modeling techniques (see Jordan 
2004 for a general overview) allow for a greater degree of complexity in hypoth-
esis testing; they allow us to infer what sort of underlying process is most likely 
to have generated the distribution of data that is observed. For instance, Dediu 
(2010) uses a series of Bayesian phylogenetic models to infer rates of gain and loss 
among typological features (from WALS, the World Atlas of Linguistic Structures; 
Haspelmath et al. 2005), from which indices of diachronic typological stability can 
be computed. Assuming fixed tree topologies for a number of linguistic stocks, 
the author infers gain and loss rates for different typological features and converts 
them into stability ranks.

However, reliance on a purely phylogenetic model fails to take into account 
areality, the understanding of which is inherent in a great deal of earlier work. 
Results of purely phylogenetic studies of typological stability have been criticized 
due to the fact that the methodology used has no explicit means of accounting 
for areal influences or system-internal typological pressures that may be at work 
(Wichmann 2015: 218–219); after all, genetic relationships are far from the only 
factors underlying typological change. Typological change often arises from areal 
pressures; genetically unrelated languages can converge on similar structures by 
virtue of inhabiting the same multilingual geographical area (cf. Gumperz & Wilson 
1971; François 2011). Language contact may also create exceptions to widespread 
typological patterns such as word order harmonies (where OV and VO constituent 
order tend to co-occur with postpositions and prepositions, respectively, in lan-
guages; cf. Graham 2016).

At the same time, it should be possible to model linguistic change along 
both vertical (i.e., genetic transmission) and lateral (i.e., areal diffusion, contact) 
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dimensions, as in Meid’s (1975) space-time schema. One such quantitative ap-
proach is found in Daumé (2009), which introduces a hierarchical Bayesian model 
designed to tease apart genetic inheritance and areal spread in typological features 
(from WALS), thus improving genetic trees constructed from such features. We 
wish to take into account areal factors that may influence linguistic evolution, and 
employ both phylogenetic and phylogeographic methods in order to quantify these 
pressures.

2.2	 Phylogenetic linguistics and graphical models

A great deal of pioneering work on quantitative typology has been done using 
frequentist statistical tests, which are easy to carry out and intuitive to understand. 
Tests of this sort, along with classical linear regression, are beset by disadvantages 
when used to model data that violates the independence assumption. This has 
generally been dealt with via principled inclusion or exclusion of language samples 
which may bias a particular outcome (cf. Dryer 1989), though techniques of this 
sort may require the available data to be underused. Some exceptions in linguistics 
and related disciplines (e.g., Botero et al. 2014) use mixed-effects modeling in order 
to account for genetic skews in linguistic data.

Graphical models, which combine probability and graph theory, allow schol-
ars to investigate relatively complex hypotheses regarding how real-world data are 
generated. In particular, fine-grained structures of conditional dependence between 
random variables can be modeled, the likes of which cannot be straightforwardly 
represented in more basic statistical analyses. (See Jordan 2004 for a general over-
view.) Models of this sort generally involve a specification where unobserved pa-
rameters are conditioned on observed data. Model fitting is usually carried out 
according to some type of iterative Bayesian procedure, usually a Markov chain 
Monte Carlo (MCMC) method, which draws samples from the posterior distribu-
tions of unobserved quantities. Alternatives to MCMC exist, such as Variational 
Bayesian methods, which approximate the true posterior distribution with a sim-
pler distribution.

Some contemporary phylogenetic models used in computational biology are 
a type of graphical model that may be familiar to some linguists, given their ex-
tension to historical linguistics. The observations consist of trait data; reasonable 
prior assumptions are made about the tree parameters, and the inference procedure 
returns the posterior parameters (i.e., branch lengths, branching structure) which 
generate the data under the model specification. Historical linguists have found it 
interesting and fruitful to adopt such tools, which employ numerical information 
(either phenotypic or genetic) in the service of exploring relationships between 
species. We refer the interested reader to general surveys of computational cladistic 
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methods (e.g., Felsenstein 2004; Nichols & Warnow 2008; Yang 2014; Dunn 2015). 
We restrict ourselves to likelihood methods (as opposed to parsimony methods, 
the rough objective of which is to minimize the number of character state changes), 
which specify a set of parameters regarding change over the phylogeny. Maximum 
likelihood methods seek the values that maximize the likelihood of the observed 
trait data conditional on these values, while Bayesian methods place priors over the 
parameters of interest and return each parameter’s posterior distribution (gener-
ally via a MCMC procedure, as mentioned in the previous paragraph). Likelihood 
approaches are preferred for a number of reasons, all of which are enumerated in 
the literature cited above; a particular strength is their ability to represent a wide 
array of character evolution scenarios.

The above methods are often used to infer a tree topology from trait data. The 
same models can be used to gather information about character change over a 
known or assumed tree topology or tree sample inferred from lexical data, which 
is one of the objectives in our paper.

3.	 Materials and methods

The methods described in the previous section provide a framework for inferring 
rates of typological change. It is hoped that, by taking into account both genetic 
and areal pressures in development, we can dispel some criticism directed at a 
purely phylogenetic approach to this question (which might extend to any and all 
phylogenetic approaches), and uncover as yet unseen patterns of linguistic change.

We seek also to include two additional design features, not fully exploited in 
previous analyses. The first is the use of ancestry constraints between known par-
ent and daughter languages. This is not the norm in evolutionary linguistic work, 
and we believe that it is critical: if a documented language of the past is treated not 
as a direct ancestor of its descendant languages but as a sibling of a hypothetical 
ancestor, it can distort the history of a linguistic feature in that group.

Additionally, we wish to project notions of contact and areality further into 
the past. 1 We wish to infer, when a change occurs on a branch of a tree, the like-
lihood that this event is a lone occurrence as opposed to one that takes place in 

1.	 We note that some authors (e.g., Trudgill 2001) have argued that adult-induced contact is a 
relatively recent phenomenon, the majority of which has taken place due to societal changes that 
have taken place in the last two millennia. While the chronology of the Indo-European languages 
exceeds this period, we note that we employ an aggregate measure of the areality of a linguistic 
change, and it is likely that the majority of the signal will be due to changes within a comparatively 
recent window of time.
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areal proximity to a similar event. In order to achieve this, we need an idea of the 
most likely geographic positions along each branch of the tree at each point in 
time, which we can infer using phylogeographic and spatial modeling techniques.

Our first goal is to infer rates of character birth and death, which jointly figure 
into a metric of viability, as outlined by Nichols (2003). Phylogenetic studies that 
have addressed questions regarding character evolution and the phylogenetic signal 
displayed by typological characters generally proceed by generating a tree topology 
based on these characters, then making inferences about which ones are more stable 
or display greater phylogenetic signal (Dunn et al. 2008). This approach stands in 
contrast to those that model evolution of characters on a tree whose topology has 
been inferred from other features, usually lexical (Dunn et al. 2011; Haynie et al. 
2014). When external evidence about a language family tree’s branching structure is 
available, we believe it prudent to make use of this information in order to provide 
a realistic history of character evolution within that family. Since we do not always 
have reliable information about the branching structure of language families, we 
limit our study to the Indo-European languages, whose history is relatively well 
known.

We employ a posterior tree sample inferred from lexical data in order to ana-
lyze the evolutionary patterns displayed by the typological feature variants in our 
dataset. Crucially, we make use of ancestry constraints in order to model direct 
descent between attested ancient or medieval and contemporary languages, where 
such relationships are known. With a few exceptions (e.g., Chang et al. 2015), an-
cestry constraints have been neglected in contemporary evolutionary linguistic 
literature, though they were used in early glottochronological literature in order to 
calibrate rates of lexical replacement (Swadesh 1952, 1955). In lexicostatistical work 
on Indo-European, it could be argued that ancestry constraints between attested 
languages (e.g., between Latin and modern Romance languages) are invalid, since 
they do not account for dialect or register variation between the ancient language 
and the possible unattested ancestor(s) of the contemporary languages. Setting that 
debate aside, however, it seems unrealistic to posit typological variation between 
ancient/medieval languages and their putative unattested sisters (though the pro-
cess of establishing invariant typological characteristics such as word order for dead 
languages is by no means trivial (see Viti 2010; Haug 2015). The tendency of linguis-
tic phylogenetic research to neglect ancestry relationships is no doubt an artifact of 
biology, where direct ancestry between observed specimens is not frequently noted. 
However, in linguistics, ancestry relationships provide crucial evidence regarding 
directionality of change, and we seek to make use of this received wisdom rather 
than allow conventions from biology to supersede it.

Readers may note a glaring omission: at the time of writing, we are working 
solely with data from Indo-European languages. A complete account of language 
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contact within the history of a group of languages should treat stock-external con-
tact. We currently lack reliable reference phylogenies for non-IE languages based on 
lexical data and other innovations, though we are working to expand our model to 
these languages. While the fact that we do not incorporate this information into our 
model is less than ideal, it is also fairly uncontroversial that, at least to some degree, 
Indo-European languages have been diversified via contact with undocumented 
speech varieties whose affiliation is unknown (Lass 1997) or which have left their 
imprint only on toponyms and other miscellaneous items (cf. Vennemann 1994). 
When a relatively unusual pattern emerges within a language family (e.g., VSO 
constituent order in Celtic, retroflexion in Indo-Aryan, ejectives in Armenian, etc., 
to note a few Indo-European examples), contact with another unrelated language 
tends to be invoked.

We hope to expand our model in the future to include contact between unre-
lated languages, but we are content for the time being to gain insight into the role 
of contact between related languages in linguistic diversification and disparification 
(cf. Garrett 2006), which we find highly interesting in its own right. In a number of 
linguistic phylogenetic studies, parallel gains on branches in the tree are treated as 
tree-internal contact events by default (cf. Nakhleh et al. 2005; List et al. 2014); both 
papers use a parsimony approach which seeks to minimize the number of gains 
on the tree. When investigating change over a phylogeny of languages, it seems 
prudent to distinguish between parallel phylogenetic gains that are due to contact 
and those that take place independently. It is hoped that the approach described 
above – i.e., making use of phylogeography – will help identify historical contact 
between lineages on the tree. 2

4.	 Data

Our data consist of two major ingredients: (1) binary typological data; and (2) a 
tree sample for Indo-European languages. We also make use of geographic and 
chronological metadata pertaining to the languages in our sample.

2.	 We acknowledge that there are additional pressures besides geographic proximity involved 
in contact events, though we cannot devote much attention to them in this paper. Population 
size may play a role; Trudgill’s (1974) gravity model, for instance, considers the influence of 
larger speech varieties on smaller ones (though Braunmüller 1984 provides evidence that 
smaller languages are resistant to the sorts of morphological simplification undergone by lan-
guages with more speakers). Since contemporary phylogenetic methods can estimate population 
sizes at ancestral states, future research might do well to take population size into account as a 
contact-related parameter.
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4.1	 DiACL

The typological data is taken from the Diachronic Atlas of Comparative Linguistics 
(DiACL) Typology Eurasia database, 3 which contains 118 typological features from 
149 Eurasian languages of multiple linguistic stocks (Carling 2017). The database is 
organized into a three-level hierarchical structure. The top level consists of GRIDS or 
domains of the grammar, of which there are five: alignment, nominal morphology, 
verbal morphology, tense and word order. Each grid is stratified according to fea-
tures, which are further divided into feature variants (e.g., word order: order 
of clitic pronouns with respect to finite verb: object verb). Feature var-
iants take Boolean values: no/false/absent, yes/true/present, or no data. 3.6% 
of cells are missing data. DiACL is somewhat unique in that it contains data from 
ancient and medieval as well as modern languages, which are crucial benchmarks 
against which to check the effectiveness of the models which we employ.

At the feature level, a degree of granularity is targeted which goes beyond that 
currently available in databases such as WALS. For example, word order is coded 
across clause types. Polymorphic behavior can be coded across feature variants; that 
is to say, two word orders that tend to be in complementary distribution can theo-
retically both be present in a language (though in some cases, marginally attested 
features are suppressed). However, in many cases, a majority rules-style coding 
procedure has been implemented in order to characterize the typical behavior of 
a language with respect to a feature variant. We restrict our analysis to the 117 
Indo-European languages in the sample, and we exclude feature variants which 
are present in either all or none of the Indo-European languages in the database, 
leaving 108 variants.

There exist some interdependencies between feature variants in the database. 
We do not employ an explicit means of addressing this issue. Below, we evaluate 
the performance of our model with respect to interdependent features.

4.1.1	 Areal dynamics across the dataset
The objective of this paper is to investigate whether changes involving different 
linguistic feature variants display different degrees of areal sensitivity. As such, we 
divide the feature variants in the dataset into three partitions. We draw inspiration 
from the large literature on linguistic and typological complexity (Braunmüller 
1984; Miestamo et al. 2008; Lupyan & Dale 2010; Baerman et al. 2015), though 
we do not necessarily adhere to the explicit and rigid taxonomies developed in 
these papers. There are myriad sophisticated ways in which to quantify linguis-
tic complexity; ours is a somewhat simplistic one which we attempt to ground in 

3.	 https://diacl.ht.lu.se/

https://diacl.ht.lu.se/
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the notion of outsider complexity (Kusters 2008). In our view, a morphosyntactic 
change does not necessarily lead to complexity by simply introducing a new mor-
phological category (e.g., definiteness, future tense, adpositions) but by giving rise 
to a grammatical relation between multiple constituents in the clause that learners 
must contend with (e.g., whether adjectives must agree with the nouns they mod-
ify in terms of a morphological category, whether overt case must be marked on 
core arguments of the verb, etc.); in this sense, our understanding of complexity 
with respect to the dataset corresponds to the notion of syntagmatic complexity 
(Nichols 2009: 111–112). We take changes that reverse such a state of affairs to bring 
about simplification. In the middle, we envision a neutral category comprising 
features that cannot be easily subsumed under the labels given above, largely con-
sisting of changes to word order; features pertaining to changes in derivational and 
inflection morphology independent of grammatical relations (e.g., whether case 
and number marking is done with agglutination or fusional morphemes) is treated 
as neutral as well, though agglutination arguably introduces a level of transparency 
(and thus simplicity) that fusional morphology lacks.

The group which we predict to show the greatest areal signal includes feature 
variants which involve some manner of structural simplification, in that learners are 
exempted from acquiring a surface-level pattern signifying a relationship between 
multiple pieces of clausal information, or some grammatical relation. This may in-
clude gaining the feature alignment: noun: present progressive: A=O (“in the 
present progressive, is the noun form for the agent the same as the noun form for 
the object?”) or losing the feature nominal morphology: nominal cases: gen/
dat (“is there a special noun form to express genitive which is not the same as dative 
case?”), which would point to morphological syncretism. We predict intermediate 
areal sensitivity among neutral features pertaining to phenomena such as word 
order; in general, such patterns are borrowable but may not necessarily represent 
the effects of second-language acquisition or other pressures pertaining to life stages 
that come into play in contact scenarios. We predict the lowest areal sensitivity for 
feature variants which introduce a degree of complexity, mirroring the variants 
in the first group, e.g., losing the feature alignment: noun: simple past: A=Sa 
(“in the simple past, is the noun form for the agent subject of a transitive clause 
the same as the noun form for the agent subject of an intransitive clause?”), which 
leads to an ergative alignment pattern. It is reasonable to hypothesize that features 
of this sort are the result of language-specific structuring of information driven by 
within-group social and cognitive needs, and could be less likely to display an areal 
pattern. We believe that our hypothesis is valid given the large body of evidence that 
many features falling under our rubric of complexity, such as redundant agreement, 
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pose problems for speakers and L2 learners but facilitate understanding for hearers 
and L1 learners (Kusters 2008: 14). 4

4.2	 Tree sample

We model character evolution on a tree sample which we inferred from 100-word 
Swadesh list lexical data from DiACL Eurasia, using Chang et al.’s (2015) modified 
version of BEAST version 1.8 (Drummond et al. 2012), 5 which allowed us to im-
pose ancestry constraints between languages which we take to be in a relationship 
of direct descent (e.g., Old, Middle and Modern Persian; Classical, Middle and 
Modern Greek, etc.). We used a restriction site character model of trait evolution 
and assumed gamma-distributed among-trait rate variation with 4 rate classes. 
We assumed uncorrelated lognormal-distributed among-branch rate variation. For 
the root age of the tree, we assumed a normal prior with a mean of 6500 BP and 
a standard deviation of 2000. We make use of clade constraints to ensure that the 
branching of the tree agrees with the general consensus regarding Indo-European 
subgrouping, based on the comparative method. Markov chain Monte Carlo infer-
ence was run for 20 million iterations. The first half of samples were discarded as 
burn-in; the remaining samples were thinned to 20 trees. Of these, root ages for the 
median 50% of trees range from 6850 to 7396 years BP. The mean posterior root age 
is 7204 years BP, and the median posterior root age is 7139 years BP. Of the trees in 
the sample, the root ages of 3 trees are in the range 5500–6500 BP, consistent with 
the Steppe Hypothesis of the origin of the Indo-European languages, while 4 are 
within the range 8000–9500, consistent with the Anatolian hypothesis; root ages for 
the remaining 13 trees are on the interval 6500–8000. We used BEAST to carry out 
a continuous phylogeographic analysis in parallel with the tree sample inference, 
which samples geographic locations for the root and interior nodes of the tree. We 
placed a weak multivariate normal prior of (0, 0) with a precision of .001 over the 
longitude and latitude of the root. For two trees, root locations were inferred that 
were not on the Eurasian landmass; we excluded these trees, leaving 18. Of the re-
maining trees, longitude values inferred for the root range from 19.4 to 57.6, with 
a mean of 38.4, median of 37.8 and standard deviation of 5, while latitude values 
inferred for the root range from 28 to 45.6, with a mean of 42.3, median of 43.2 and 

4.	 While we treat features pertaining to word order as neutral, we acknowledge that certain 
word orders and combinations of word orders are argued to be more ‘difficult’ from generative 
as well as psycholinguistic standpoints. However, we lack a principled means of dividing neutral 
features among the two other groups.

5.	 Available at https://github.com/whdc/ieo-beast/

https://github.com/whdc/ieo-beast/
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a standard deviation of 9 (Figure 1 displays observed and inferred node locations 
on a map). Together, these phylogenetic and phylogeographic analyses make it pos-
sible to infer which change events are consistent with a language contact scenario.

4.2.1	 Ancestry constraints
Comparative-historical linguists have developed a number of criteria for establish-
ing whether any two languages spoken during different periods are in a relation-
ship of direct descent or rather descended from a common ancestor (Hoenigswald 
1960, 1966). Previous work which has modeled the evolution of typological features 
over language phylogenies has tended to treat these ancestral languages not as 
the parents of their descendant languages, but rather as the siblings of an unob-
served node ancestral to what are traditionally considered to be its descendants 
(Dediu 2010; Dunn et al. 2011). Figure 4 gives a graphical representation of this 
difference. We model ancestry relationships in our tree between known parent and 
descendant languages (e.g., Latin vs. Romance, Classical vs. Middle vs. Modern 
Greek). Whether or not ancestry constraints should be imposed remains some-
what controversial. Opponents may argue that Classical Greek cannot be taken as 
directly ancestral to Middle and Modern Greek, given the dialectal diversity across 
ancient dialects, or that a language like Classical Latin as found in documents of 
antiquity represents a literary register different from the common speech, and that 
it is improper to assume this ‘doculect’ to be directly ancestral to French, Italian, 
etc. Proponents (such as ourselves) argue that models without ancestry constraints 
posit an unrealistically high degree of divergence between hypothetical speech va-
rieties that must have been mutually intelligible; allowing an ancestral language 
to be an outgroup has the potential to underestimate recurrent changes that have 
taken place in the prehistory of the ancestor but have been lost in its descendants. 
Furthermore, a great deal of dialectal variation consists of low-level phonological 
and morphological variation, whereas a consistent typological and lexical profile 
can generally be assumed for ancient doculects (cf. Fortson 2015). 6 This leaves 
some issues unresolved, but the proper modeling of speech register in the context 
of phylogenetic linguistics remains a topic outside of the scope of this paper. The 
ancestry constraints we use are listed in the Appendix (http://dx.doi.org/10.1075/
dia.16035.cat.additional).

6.	 At the same time, we acknowledge the fact that there are a handful of exceptions to this gen-
eralization, such as differentiation with respect to V2 word order among Middle English dialects 
(Kroch et al. 2000), though we remain uncertain as to whether such cases are the exception or 
the norm.

http://dx.doi.org/10.1075/dia.16035.cat.additional
http://dx.doi.org/10.1075/dia.16035.cat.additional
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5.	 Model

Our procedure is bipartite, roughly speaking: first, we carry out a phylogenetic 
analysis to infer rates of character evolution (as well as likely character birth and 
death locations on the tree topology); then, we carry out a spatial model of phylo-
geographic diffusion to recover likely geographic locations of evolutionary events 
on the tree. Below, we give a conceptual overview of each step of this procedure, 
followed by a full, detailed specification.

type
internal
root
tip

Figure 1.  Locations for attested languages (blue) as well as locations inferred for internal 
nodes (red) and the root (green), for all 18 trees
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Albanian
Greek
Armenian
Celtic

Italic

Germanic

Slavic

Baltic

Indic

Nuristani

Iranian
Tocharian 
Anatolian

Figure 2.  Indo-European languages (more detailed version available at https://github.
com/chundrac/areal-pressure-gram-evo/blob/master/diacl_densitree.pdf)

5.1	 Evolutionary model

Our evolutionary model works as follows: first, we infer distributions for each fea-
ture’s gain and loss rate. Subsequently, we carry out ancestral state reconstruction 
and character mapping to simulate change events over the phylogeny, coupling 
this information with that of the phylogeographic model in order to pinpoint these 
events in time and phylogeographic space.

5.1.1	 Rate inference
We assume that the features in our dataset evolve according to a two-rate 
continuous-time Markov (CTM) process, with a gain rate α and loss rate β. For a 
branch of length tparent[n],n connecting a node n to its direct ancestor, denoted by 
parent[n], the probability that parent[n] is in state s(parent[n]) and n is in state 
s(n), ps(parent[n])s(n)(lparent[n],n), can be calculated from α and β as follows (Liggett 
2010: 59–50):

(1)	     s(n) = 0 s(n) = 1

s(parent[n]) = 0 β
α+β α+β α+β α+β

α+β α+βα+βα+β

+ α e −(α+β)tparent[n], n −(α+β)tparent[n], nα − α e

s(parent[n]) = 1 β − β e −(α+β)tparent[n], n −(α+β)tparent[n], nα + β e

The values for α and β are unknown. We wish to draw samples for these parameters 
from their posterior distributions via an MCMC procedure, as outlined below.

https://github.com/chundrac/areal-pressure-gram-evo/blob/master/diacl_densitree.pdf
https://github.com/chundrac/areal-pressure-gram-evo/blob/master/diacl_densitree.pdf
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Figure 3.  Indo-European language locations

The likelihood of the data observed at the tips of a tree with a fixed topology given a 
gain rate α and loss rate β can be efficiently computed via the pruning algorithm 
(Felsenstein 2004: 253–255), which starts at the tips of the tree and recursively 
computes the likelihood that each interior node of the tree is in state 0 or 1 (in the 
case of a binary character) under the current rate parameters, as follows:
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Figure 4.  Tree topologies representing the relationship between Classical, Middle and 
Modern Greek, with and without ancestry constraints

(2)	  ℓ(s(n) = i; α, β) = ∏
child∈children[n]

1
∑
j=0

pij(tn, child; α, β)ℓ(child = j; α, β))(

Above, children[n] denotes the direct descendants of node n, and ℓ(child = j; α, 
β) the likelihood of a given child having the state j under the rate parameters. For 
tips of the tree where data is observed, this likelihood is independent of the rate 
parameters, and is 1 or 0 depending on whether the tip in question exhibits the 
state j. In the case of missing data at the tips of the tree, the likelihood of each state 
is set to 1 (Felsenstein 2004: 255).

The overall likelihood of the tree is the sum of likelihoods that the root is in 
each state, weighted by the prior probability of each state:

(3)	  ℓ(tree; α, β) = ℓ(root = 1; α, β)+ ℓ(root = 0; α, β)α
α+β

β
α+β

For each feature f, we sample from the posterior distribution of αf and βf via MCMC, 
an iterative procedure. We randomly initialize αf and βf, computing the likelihood 
under αf and βf (ℓ(tree;αf, (βf)), and new values α′f, β

′
f are drawn as follows:

(4)	  α′f ~ N(αf , σαf ), β′f ~ N(βf , σβf )

The likelihood of the tree under α′
f, β

′
f, ℓ(tree; α′

f, β
′
f), is computed as well. 

The proposed values α′
f, β

′
f are accepted (replacing the current values) via the 

Metropolis-Hastings algorithm (in this case equivalent to the Metropolis algorithm, 
since the proposal distribution is Gaussian and therefore symmetric), i.e., if a ran-
domly generated number a ~ U(0, 1) is less than 

ℓ(tree; α′f, β′f)
ℓ(tree; αf, βf)

min(1,                         ).

Above, σαf, σβf denote the step sizes for the two parameters. These values are 
nontrivial, as they have an effect on the extent to which the space of possible states 
is explored. We initialize these values at .5. During the initial stages of inference, 
we monitor the proportion of proposals that are accepted and tune the step sizes 
by raising or lowering them if the acceptance rate is too high or low, respectively. 
We aim for an optimal acceptance rate in the 20–30% range (cf. Rosenthal 2011).
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We run this procedure on three chains for 10,000 iterations, averaging over 
all trees in the tree sample (in order to incorporate a degree of phylogenetic un-
certainty) and discarding the first half of samples as burn-in. We monitor con-
vergence by calculating the potential scale reduction factor R̂ for each posterior 
sample (log-transformed to introduce normality), which is the square root of the 
ratio of the between-chain variance and the average within-chain variance, under 
the assumption that the posterior distribution is normal (Gelman & Rubin 1992). 
Values below 1.1 indicate good convergence, a threshold reached by all the rate 
distributions we infer.

5.2	 Changes in time and space

5.2.1	 Character mapping
Given fixed values or distributions over rates of evolution, evolutionary character 
histories can be simulated over a tree topology, first by reconstructing state proba-
bilities at internal nodes of the tree, then by simulating birth and death events over 
the branches of the tree, the waiting times of which follow an exponential distribu-
tion parameterized by the evolutionary rate values inferred above. This procedure 
is described in various papers (e.g., Nielsen 2002; Bollback 2006).

5.2.2	 Ancestral state reconstruction
Given a posterior distribution of rates αf  and βf, we can estimate the probability 
that feature f is present at the root of the tree or a given interior node. This is done 
in the following manner. First, values for αf  and βf  are sampled with replacement 
from their respective posterior distributions. The likelihood of each node under 
these rate values is computed, again via the pruning algorithm. Subsequently, the 
probability that feature f is present at the root can be computed, as follows:

(5)	  p(s f (root) = 1|data, tree, α, β) =
α · ℓ(root = 1; α, β)

α · ℓ(root = 1; α, β) + β · ℓ(root = 0; α, β)

The state of the root can be simulated via a draw from a Bernoulli distribution 
parameterized by the probability given above.

Moving down the tree toward the tips, we calculate the probability that feature 
f is present in each internal node of the tree n on the basis of the state sampled for 
its parent, parent[n]:

(6)	  p(s f (n) = 1|s f (parent[n]) = i, data, tree, α, β) =
ℓ f (n = 1; α, β)pi1(tparent[n], n; α, β)

ℓ f (n = j; α, β)pij(tparent[n], n; α, β)∑ j=0
1
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This update can also be carried out for tips with missing data. The above procedure 
is carried out many times, yielding a distribution over change events.

5.2.3	 Birth/death simulation
Once state values have been sampled at ancestral states, birth and death events can 
be simulated along branches as follows: for branches where the parent state is 0 
and the child state is 1, a waiting time for birth can be drawn from an exponential 
distribution parameterized by the currently sampled value of αf ; for branches where 
the parent state is 1 and the child state is 0, a waiting time for death can be drawn 
from an exponential distribution parameterized by the currently sampled value of 
βf. Given a waiting time w ~ Exponential(αf) or Exponential(βf), the geographic 
locations of these evolutionary events can be simulated on the basis of the phylo-
geographic information inferred for the nodes in the tree:

(7)  	longitude(event) ≈ w
tparent[n], n

(longitude(n) – longitude(parent[n]));

latitude(event) ≈ w
tparent[n], n

(latitude(n) – latitude(parent[n]))

The time (in years) at which the inferred event takes place can easily be gleaned on 
the basis of the age of the parent node of the branch on which the change occurs 
plus the waiting time drawn. We tabulate all simulated change events and analyze 
the spatiotemporal behavior displayed by these events as described below.

6.	 Results

6.1	 Evaluation metrics

We modify the character mapping procedure described above in order to evaluate 
the accuracy with which our evolutionary model generates the data in our dataset. 
Our inference procedure fits the model on the basis of posterior probability, a 
helpful metric for model selection, but otherwise not particularly meaningful when 
assessing a model on its own. We present two measures designed to assess how well 
our parameters generate the data in our model, inspired by evaluation metrics that 
are the norm in Natural Language Processing. 7

7.	 The rates inferred have been inferred on the basis of all the data in our dataset; at the time 
of writing, we have no principled or efficient way of cross-validating our rates by holding out 
certain observed data points.
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6.1.1	 Capturing data at tips
One of our evaluation methods is inspired by phylogenetic data simulation (cf. 
Paradis 2014), but to our knowledge it serves as a novel means of evaluation. We 
first draw a state for the root on the basis of Equation 5. Moving down the tree, we 
simulate states for each of the nodes on the basis of Equation 6, but we exclude the 
likelihood term such that the state is drawn on the basis of the CTM process alone:

(8)	  p(s f (n) = 1|s f (parent[n]) = i, tree, α, β) = pi1(tparent[n], n; α, β)

Finally, we sample states for the tips on the basis of the above equation; we can then 
compare the simulated state sf (tip)sim to the true state sf (tip)true for tips without 
missing data, and compute an accuracy measure 1 − |sf (tip)sim − sf (tip)true|. 8

In general, we believe that this metric will be challenging for a number of evolu-
tionary models and will return measures of accuracy that are relatively conservative. 
In particular, it is likely that this metric will pose difficulties for evolutionary trees 
where there is a great deal of featural variation within subgroups, as the process of 
generating the data at the tips will become increasingly aleatory – more so than in 
clades where most members share the same feature value (which would be recon-
structed with higher probability at a common ancestor).

We report the results of this evaluation procedure for readers’ general interest. 
In reality, if this measure is to be useful in future work, it will have far more util-
ity in facilitating direct comparison between two different types of evolutionary 
model, something that is not at issue in this paper. Accuracy levels averaged across 
languages for each feature (ranging from .49 to .97, with a mean of .68 and median 
of .66), as well as levels averaged across features for each language (ranging from 
.6 to .75, with a mean of .68 and median of .69), can be found in the Appendix 
(http://dx.doi.org/10.1075/dia.16035.cat.additional). In general, features with high 
accuracy levels tend to be fairly homogeneous at the tips of the tree; lower values 
are found for heterogeneous features. Accuracy across languages shows a much 
narrower range of values, and it is harder to come up with a clear account of why 
some languages show higher accuracy than others, though it is worth noting that 
older languages tend to display higher than younger ones. This is likely due to the 
fact that older languages have a great deal of influence over the value reconstructed 
for the root; in turn, due to their chronological proximity to the root, the values 
simulated for older languages are more likely to be identical to the root under 
a CTM process, resulting at least in part in more accurate values (while values 

8.	 A reviewer suggests the use of the F-score, which entails partitioning the data to be evaluated 
into true positives, false positives and false negatives. While this is theoretically possible for us to 
do, we find the simple evaluation metric we describe here to be more intuitive, since the dataset 
to be evaluated and the dataset which serves as the basis of evaluation are of the same size.

http://dx.doi.org/10.1075/dia.16035.cat.additional
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sampled for younger languages in the tree are increasingly subject to randomness 
and hence lower accuracy).

6.1.2	 Capturing ancient/medieval data
Our use of ancestry constraints serves as a crucial calibration point for the rates of 
change in our model. One possibility is to evaluate the accuracy of this calibration 
by holding out the data found in languages which are treated as directly ancestral 
to other languages, and seeing how well our model recapitulates the states found 
in these languages. To do this, we employ the evolutionary rates inferred in the 
procedure described above. Then, we carry out stochastic character mapping for 
each feature variant but treat the ancestral nodes in question as if they contain 
missing data. We then compare the simulated states against their true values via 
the metric described in the previous evaluation procedure. Average accuracy for 
ancient and medieval languages in the database ranges from .72 to .93 (with the 
value 1 representing complete accuracy), with a mean and median of .84. Values 
for each language are given in the Appendix (http://dx.doi.org/10.1075/dia.16035.
cat.additional).

Old Italian has the highest average accuracy, while Classical Greek has the low-
est; in general, medieval languages in a direct lineage between an ancient and mod-
ern language (e.g., Middle Greek, between Classical and Modern Greek; Middle 
High German, between Old and Modern High German, etc.) fare better than an-
cient languages. This could potentially be due to a number of factors, including the 
fact that these languages in particular are both typologically and chronologically 
close to their daughter languages (which are few in number and relatively homoge-
neous). It is worth noting that, for all but two categories attested for both languages, 
Old and Modern Italian agree. Classical and Modern Greek show a much higher 
degree of disagreement, so when we attempt to reconstruct the former language on 
the basis of data attested by the latter language, there is a greater possibility of error. 
A greater potential for error is also to be expected for ancient languages with a large 
number of diverse daughter languages, such as Latin (with an accuracy level of .73). 
However, Sanskrit fares relatively well (.89), despite having a similar genealogical 
profile. This is perhaps due to the inclusion of Prakrit, which agrees with Sanskrit 
to a large extent and is close enough to Sanskrit chronologically to influence the 
character state which is reconstructed. Were Prakrit to be omitted, Sanskrit features 
would likely be reconstructed with lower accuracy.

6.1.3	 Dependencies
A number of dependencies exist between features in the DiACL dataset. In this pa-
per, we employ a relatively hands-off approach to dealing with these dependencies; 
our rationale is that, given the fact that ancestral state likelihoods are computed 

http://dx.doi.org/10.1075/dia.16035.cat.additional
http://dx.doi.org/10.1075/dia.16035.cat.additional
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on the basis of the distributions of features at tips on the tree, the probability of 
reconstructing a combination of features that violates dependency rules is relatively 
unlikely. 9

We identify a number of sets of interdependent features. Some dependencies 
involve attraction, i.e., in order for a feature to be valued 1, one or more additional 
features must have that value. Other dependencies are repellent, i.e., in order for a 
feature to be valued 1, one or more additional features must have the value 0. For 
some interdependent features, such as features pertaining to main and subordinate 
clause word order, at least one feature must be valued 1 (according to the coding sys-
tem employed in this paper). Additionally, word order variants such as V2 should 
not be able to co-occur with other orders within a single grammatical system.

We tabulate illicit value combinations for these sets of interdependent variants. 
For instance, the variant nominal morphology: nominal case: dat/gen (“does 
the language have genitive morphological case as distinct from dative case?”) re-
quires that two other variants, namely nominal morphology: nominal case: dat 
and nominal morphology: nominal case: gen, have values of 1. Similarly the 
variant nominal morphology: nominal cases: OBL-case (“are there any cases 
besides agent, object, genitive, dative, vocative?”) requires that all variants pertain-
ing to the presence of these cases be valued 1. The variant nominal morphology: 
nominal cases: > 7 cases (“are there more than 7 cases?”) ought to entail a value 
of 1 for OBL-cases.

The full list of interdependent variant sets, along with licit combinations for 
these sets, is given in the Appendix (http://dx.doi.org/10.1075/dia.16035.cat.ad-
ditional). For the majority of the sets identified, illicit combinations are found in 
no more than 10% of character mapping simulations. However, there are a small 
number of exceptions. Illicit combinations for sets involving the variants nom-
inal morphology: nominal cases: > 7 cases and nominal morphology: 
nominal cases: OBL-cases for 38% and 41% of iterations; additionally, scores for 
main-clause and subordinate-clause word order variants show that V2 frequently 
co-occurs with other word order variants, which is not permissible under the 
definitions for the features in question. These values suggest that features such as 
nominal morphology: nominal cases: > 7 cases and nominal morphology: 
nominal cases: OBL-cases be excluded from future phylogenetic analyses, given 
their dependency on a large number of features already in the dataset, and that 
word order should perhaps be modeled as a multistate character. We retain these 
features with these caveats in mind.

9.	 In theory, a way to deal with the dependency problem is to bundle multiple interdependent 
binary features together as a single multistate feature.

http://dx.doi.org/10.1075/dia.16035.cat.additional
http://dx.doi.org/10.1075/dia.16035.cat.additional
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6.2	 Reconstructions

As automated ancestral state reconstruction gains increasing currency in historical 
linguistics, it has become common to evaluate the performance of ancestral state 
reconstruction against comparative reconstructions carried out by one or more 
experts (Dunn et al. 2017; Jäger & List forthcoming). Given the long history of 
scholarship on Indo-European morphosyntax, as well as the frequently opposing 
views found in the literature, a full appraisal along these lines is beyond the scope 
of this paper; we set this evaluation aside for future work. We give the full series of 
PIE reconstructions in the Appendix (http://dx.doi.org/10.1075/dia.16035.cat.ad-
ditional) (i.e., for a given feature, the proportion of simulations for which a value 1 
has been drawn, according to the procedure described in §5.2.2), and we briefly 
discuss key results below.

Nominative/accusative alignment is reconstructed across the scheme of fea-
tures pertaining to alignment; for each feature, the variant A=Sa (“is the subject of 
a transitive clause marked the same as the subject of an agentive intransitive verb?”) 
is reconstructed with probability greater than .5, whereas alternative alignment 
patterns are reconstructed below this threshold. Nominative/accusative alignment 
was proposed for Proto-Indo-European by Delbrück (1900); in later years, the idea 
that PIE had active/stative alignment (promoted by Gamkrelidze & Ivanov 1995) 
enjoyed popularity, though this view has been reconsidered in recent years (cf. Viti 
2014). Our results fail to bear on debates as to whether SOV (Delbrück 1900) or SVO 
(Friedrich 1975) word order should be reconstructed to Proto-Indo-European, as 
both word orders are chosen with roughly equal probability. All variants pertaining 
to definiteness are reconstructed with low probability. This result is uncontroversial, 
given evidence that Indo-European branches developed definiteness marking inde-
pendently, by means of grammaticalization (Bauer 2007). Problematically, neuter 
gender is reconstructed with very low probability; this is undoubtedly due to the 
influence of Tocharian A and B, which lack a productive neuter gender.

At the time of writing, automated ancestral state reconstruction is still some-
what uncommon in evolutionary linguistics. We anticipate a growth in the applica-
tion of these methodologies to Indo-European prehistory, which will allow scholars 
to compare results generated by different character evolution models, as well as 
develop a more refined framework for evaluating their accuracy.

A pressing question for us is whether potentially problematic reconstructions 
will bias the results of our spatiotemporal analysis. Since we classify gains of certain 
morphological categories involving case marking as introducing complexity, and 
expect that such changes will be more areally dispersed, a change taking place on 
a branch leading from PIE to Proto-Anatolian could potentially inflate the areal 

http://dx.doi.org/10.1075/dia.16035.cat.additional
http://dx.doi.org/10.1075/dia.16035.cat.additional
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dispersion which we measure, though we generally find this to not be a major 
problem for our analysis. 10

6.3	 Analysis

The birth/death simulation procedure described above allows us to estimate the 
location of each type of event (gain or loss) for each variant in time and space. This 
allows us to quantify the areal sensitivity displayed by each feature variant. We 
require a metric that allows us to determine how areally concentrated or dispersed 
parallel changes are, in order to establish a continuous measure which differentiates 
between changes sensitive to areality and those insensitive to it.

We use a version of mean nearest-neighbor distance (MNN; Clark & Evans 
1954) to measure the spatiotemporal dispersion of change events. Lower mean 
nearest-neighbor distance values indicate greater areal clumping, while higher 
values indicate greater dispersion. We assess the degree of convergent behavior 
displayed by a type of change (e.g., gain or loss of a particular variant) in the fol-
lowing manner: for a given change (e.g., loss of the variant nominal morphology: 
nominal case: dat/gen) that occurs more than once during a given simulation, we 
calculate the spatiotemporal distance to the nearest change of the same type, and 
we take the average of these distances. We define spatiotemporal distance between 
two change events, changei, changej as follows (where dGC(.,.) is the great-circle 
distance between geographic coordinates of each event and dt(.,.) is the difference 
between the times, in years):

(9)	  dGC(changei, changej)2+dt(changei, changej)2√
Mean nearest-neighbor distance is not independent of sample size. In general, if 
there are a large number of objects in a fixed area, nearest-neighbor distances be-
tween them are more likely to be small. Similarly, spatiotemporal distances between 
locations on trees in the tree sample are highly correlated with cophenetic (i.e., 
genetic) distances, since the model of spatial dispersal depends highly on the gene-
alogy of the language. At the same time, it may be possible to control for cophenetic 

10.	 Indeed, gains for the feature nominal morphology: gender / noun class: neutr rank 
quite high according to our areal metric, described in the following section (in 14th place). 
However, since this change introduces complexity, and we predict such changes to exhibit low 
areality, this particular data point adds a bit of noise to our model (going against our prediction) 
rather than inflating the probability of a false positive. At the moment, we lack a principled 
means of excluding data points from our spatial analysis on the basis of whether their automated 
reconstruction accords with traditional views; we can only hope to replicate our result in future 
studies using more refined models of character evolution.
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distance as a nuisance factor. For each spatiotemporal nearest-neighbor distance 
measured between two simulated events, we measure the corresponding cophenetic 
distance as well. We define the cophenetic distance between two locations on the 
tree to be the sum of the lengths of the branches connecting them to their most 
recent common ancestor (if they are in different lineages) or the sum of the lengths 
of the branches connecting them (if they are in the same lineage). 11 Figure 5 dis-
plays log-transformed nearest-neighbor spatiotemporal distances for each type of 
change averaged according to each iteration of the simulation procedure, plotted by 
the average of the corresponding cophenetic distances, also log-transformed. The 
correlation is clearly visible (Pearson’s r = .73). We seek to factor out this association 
by means of principal components analysis (PCA), which transforms a set of corre-
lated variables into a set of uncorrelated ones (known as principal components) by 
locating axes (analogous to the line of best fit in a linear regression model) which 
explain the largest portions of variance in the data. We use PCA to tease apart 
spatiotemporal and cophenetic distances for each dispersion metric.

We note that the data we use (i.e., simulated change events) are grouped; multi-
ple change events are generated by the same iteration of the simulation procedure. 
Different sets of change events will be generated using different trees in the tree 
sample. The relationship between spatiotemporal and cophenetic distance, while 
significant across all trees in the tree sample (Pearson’s r = .31 − .60), varies across 
trees in terms of the degree of correlation and line of best fit. Standard PCA has no 
means for accounting for group-level idiosyncrasies of this sort, so we carry out 
separate principal components analyses for all 18 trees in the tree sample to account 
for differences in group-level behavior (rather than a single principal components 
analysis which pools together data generated using all 18 trees in the sample).

Certain change types do not exhibit recurrent changes for every iteration of the 
simulation procedure, given the probabilistic nature of stochastic character map-
ping. For instance, the variant word order: main clauses: VSO exhibits parallel 

11.	 In general, we are wary of potentially including changes that occur within the same lineage 
(e.g., if a variant is gained on an ancestral branch, then lost, then gained again on a branch leading 
to a descendant node) for multiple reasons. First, parallel changes of this sort do not speak to 
a contact scenario (it is certainly possible for languages to be influenced by the language from 
which they are descended, particularly if the ancestral language has served as a Dachsprache, 
e.g., Latin with respect to Romance, but we do not find this to be relevant to a study of conver-
gent evolution of the phenomena which we investigate here). Secondly, the fact that cophenetic 
distances between nodes in the same lineage have the potential to be shorter on average than 
those between nodes in different lineages could possibly create bimodality in a distribution over 
cophenetic distances between data points. Given the fact that we do not observe bimodality 
among the cophenetic distances in our sample, we surmise that our simulation procedure rarely 
(if at all) treats nodes in the same lineage as spatiotemporal nearest neighbors.
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losses in only 38 out of 100 iterations of the simulation procedure. This appears 
to be due to the fact that, in some cases, VSO word order is not reconstructed to 
Proto-Celtic (this result accords with the traditional comparative-historical view, 
given the fact that Gaulish, not in our sample, lacks VSO word order), but on oc-
casion it is, and during a fraction of simulations it is lost in parallel on branches 
leading to various Celtic languages which lack main clause VSO word order. If 
changes which only occur more than once in a small fraction of iterations happen 
to display a particularly high areal concentration, the results of our linear model 
could be biased. We see no straightforward way to weight our areality metric ac-
cording to the proportion of iterations in which a change occurs in parallel; instead, 
we exclude events pertaining to change types which occur in parallel in fewer than 
80 iterations of the simulation procedure (leaving 185 out of 216 change types).
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Figure 5.  Mean nearest-neighbor spatiotemporal distance for each feature, plotted 
according to the mean of the corresponding cophenetic distances; labels indicate 
S(implifying), N(eutral), C(omplexifying)
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For each PCA, PC1 represents the correlation between spatiotemporal and 
cophenetic distance; high values represent data points that display high spatiotem-
poral and commensurate cophenetic dispersion. For all 18 analyses, this compo-
nent explains 72–81% of the variance in the relationship between spatiotemporal 
and cophenetic distance. The remaining 19–28% of variance is explained by PC2; 
orthogonal to PC1, PC2 represents differences in spatiotemporal dispersion that 
are not explained by cophenetic distance; high values of PC2 indicate data points 
that are spatiotemporally concentrated but relatively cophenetically dispersed. As 
such, it serves as our variable of interest.

The proportion of variance explained by PC2 is above the 5% threshold above 
which a component in PCA is said to be meaningful (cf. Baayen 2008: 121). High 
values for PC2 represent data points that are more areally concentrated than would 
be expected given their cophenetic dispersion. We predict that changes that simplify 
(S) will show a greater spatiotemporal concentration (i.e., higher values of PC2) 
than changes that are neutral (N) and changes that introduce complexity (C), and 
that level N will show higher values of PC2 than level C.

We concatenate values for PC2 from the 18 principal components analyses we 
carried out (one for each tree in the tree sample) to create a vector variable quan-
tifying areality for the entire dataset. We fit a mixed-effects linear model which 
treats areality as the response to a categorical predictor with the levels (S)implify-
ing, (N)eutral and (C)omplexifying. We include random intercepts for each tree 
in the sample that is used, each grid, each feature variant and each change 
type (i.e., gain or loss); these factors have the potential to display group-level idi-
osyncrasies (and their inclusion is justified by a likelihood-ratio test). Since these 
levels are ordered, we use Helmert coding (Darlington & Hayes 2017: 283–286), 
a system in which the mean of each level is compared to the mean of the subse-
quent levels. Under our hypothesis, changes which introduce complexity exhibit 
the lowest areality, followed by neutral changes and changes which simplify. This 
yields the predefined contrasts N, S vs. C and S vs. N. Significance is assessed via 
a likelihood-ratio test.

We find that changes which introduce complexity (C) are significantly less areal 
than neutral (N) and simplifying (S) changes (βS, N vs. C = .02, LR = 4.47, p = .03; 
βS vs. N = .02, LR = 0.83, p = .36); however, we find no significant differences in areal-
ity between levels N and S. Coefficients and p-values cited above reflect simulations 
that were generated with the random number seed 0. We ran the simulation proce-
dure 20 times using different random number seeds and carried out the same linear 
mixed-effects models described above. The directions of the effects were the same 
as above for 19 out of 20 random number seeds, and significance was achieved for 
the contrast S, N vs. C for 16 out of 20 random number seeds. We meta-analyze the 
p-values from the models for all 20 random number seeds via Fisher’s combined 
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probability test (S, N vs. C: χ2(40) = 166.2, p < .001; S vs. N: χ2(40) = 39.4, p = .49). 
Overall, our results indicate that, according to our sample, simplifying and neutral 
changes form a natural class to the exclusion of changes which introduce complex-
ity, with the latter group showing lower areal concentration among parallel changes.

7.	 Discussion

These results suggest that, in terms of convergent development, changes involving 
structural simplification as well as those pertaining to headedness and constituent 
order (which make up a large part of the neutral group) form a natural class to the 
exclusion of changes which introduce complexity, with the former group showing a 
greater areal signal. This suggests that the development of particular word orders, as 
well as the loss of verb agreement (as found in several North Germanic languages), 
may have been mediated by contact between speakers of Indo-European popula-
tions (as well as additional populations); in contrast, the development of marked 
alignment patterns such as nominative-accusative alignment or various types of 
verbal agreement seem to show more of a drift-like development, independent 
of areal interaction (according to our model). For instance, changes pertaining to 
the development of split ergativity (e.g., gaining the feature alignment: compare 
prog-past: past_a=prog_o “does the subject of a transitive verb in the simple 
past bear the same case form as the object of a verb in the present progressive?”) 
do not display much in the way of areal signal, according to our metric (ranking 
142 out of 214 change types, with 1 being most areal).

Our results show that typological features are characterized by a great deal 
of variability in the degree of spatiotemporal concentration that their evolution-
ary patterns display. We have attempted to aggregate the overall areal sensitivity 
displayed by changes pertaining to these features. On a variant-by-variant basis, 
our results may or may not accord with views in the literature on linguistic areas 
and language contact. In some cases, they are compatible with other results con-
cerning multilingualism and morphosyntactic change. For instance, we see that 
changes involving loss of nominal and pronominal case are well attested within 
the top quartile of all changes, ranked according to their areal sensitivity (e.g., loss 
of nominal morphology: nominal cases: vocative, ranked 8; loss of nomi-
nal morphology: nominal cases: gen/dat, ranked 16; etc.). In our view, this 
is compatible with views suggesting a link between so-called ‘foreigner-directed 
speech’ and loss of morphological case (Bentz & Winter 2013). It is conceivable 
that this dynamic could work toward the attrition of case in two languages that 
originally have it, particularly if a third substrate group (the sort that our model 
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cannot currently detect) were involved as well. 12 However, we also find that certain 
changes that involve gains of nominal case are found, albeit more sparsely, in the 
top quartile as well.

While nearest-neighbor distances have the potential to summarize and ag-
gregate the areal signal displayed by linguistic evolution, some mismatches with 
received wisdom can be expected, given the nature of the metric. This can be seen 
in the case of V2 word order, considered by many to be an areal feature (Nichols 
1998: 253), though our results do not show gains in V2 word order to be particularly 
concentrated for either metric in main or subordinate clauses (ranking 157 and 193, 
respectively). This is undoubtedly due to outliers like Kashmiri, which has devel-
oped V2 in isolation, and Icelandic, which developed V2 in subordinate clauses at 
a distance from Yiddish, the only other Germanic language with this feature. Loss 
of V2 main clause word order, however, is classified as highly areal (with a rank 
of 4); it is lost between Old French and Modern French dialects, Old and Modern 
Provençal, Old and Middle English, and Middle and Modern Welsh. It is likely that 
the relative proximity between the first two events on the one hand and the last two 
events on the other are responsible for this measurement.

VSO is another order thought to be areal, given its synchronic distribution; 
within Indo-European, it is confined to Insular Celtic. However, VSO does not 
exhibit great areal sensitivity according to the parallel gain or gain/presence MNN 
metrics (ranking 146 for subordinate clauses and 187 for main clauses); this is likely 
a consequence of the fact that modern Welsh developed VSO main clause word 
order at a relatively late date and hence at a fair spatiotemporal distance from Irish 
and Scottish Gaelic. The development of VSO in modern Welsh cannot be a chance 
occurrence, but if our model is valid, the areal-looking pattern found among Celtic 
languages is perhaps not due to contact alone; indeed, many of the causes of the shift 
from V2 to VSO in Welsh main clause word order may largely be due to intricate 
system-internal structural factors (cf. Willis 1998).

We note some final mismatches between our findings and conventional wis-
dom. The variants tense: future: fut.aux (“is there a future formed by an aux-
iliary?”) and nominal morphology: definiteness: n-def (“is there a suffix for 
definiteness on the noun?”) are two prominent correlates of certain areal groups, 
particularly the Balkan Sprachbund (Schaller 1975). However, gains of these vari-
ants are not treated as particularly areal according to our metric; the changes’ ranks 
(89 and 106, respectively) are outside of the top quartile. This is undoubtedly due 
to the fact that these variants are gained in parallel outside of well-established areal 

12.	 It is worth noting that many case studies have spurred a large amount of debate as to whether 
the imposition of one language’s feature onto another has taken place, or whether the two lan-
guages have undergone joint convergence induced by a third (cf. Hock 1996 [1993]).
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groups, with future-tense auxiliaries coming about frequently and suffixal definite-
ness marking being widespread in North Germanic as well (though likely due to ge-
netic inheritance rather than contact, since it is attested in Old Norse). Accordingly, 
our mean nearest-neighbor distance metric is insensitive to the fact that certain 
data points cluster together, if additional data points are relatively dispersed (it is 
worth noting that our analysis, which is restricted to Indo-European languages, 
excludes Turkish, a non-Indo-European member of the Balkan Sprachbund, and 
this may affect our results). It may be more appropriate to employ a distance-based 
metric concerned with whether a subset of evolutionary events are spatiotempo-
rally concentrated, rather than all of them, though currently we can think of no 
principled way of implementing such a measure.

Our model at its current stage uses only morphosyntactic data, and thus it is 
ill-equipped to test some of the broader claims regarding structural (e.g., phonolog-
ical as well as morphosyntactic) versus lexical effects of language contact at different 
life stages (Ross 2013), and our lack of reliable demographic and sociopolitical 
information makes it difficult to engage with notions of source versus recipient 
language agentivity and directionality (Winford 2005), but it is hoped that future 
adaptations of this methodology can be brought to bear on some questions from 
the larger literature on correlates and limitations of contact.

8.	 Conclusion

We have introduced a novel methodology for investigating the diachronic areal sen-
sitivity of linguistic features, utilizing an explicit phylogenetic and geospatial model. 
We found that parallel changes which introduce linguistic complexity are less are-
ally concentrated than parallel changes which involve linguistic simplification or are 
neutral, or do not affect the syntagmatic complexity of the grammatical system in 
either direction. We believe that this methodology presents a promising direction 
for research that seeks to investigate both the genetic or vertical and areal or lateral 
dynamics of linguistic change. Future use of this methodology may be extended 
to other types of linguistic features and other language families. Additionally, this 
method is compatible with a parsimony approach to character evolution, though 
parsimony lacks an explicit means of locating mutations on branches of a tree.

It should be stressed that what is presented here is not an explicit areal- 
phylogenetic model of evolution, and we have refrained from referring to parallel 
change due TO contact rather than compatible with a contact scenario. A truly 
areal-phylogenetic model would need to have a generative story regarding, for 
each change, whether it is due to an areal or genetic factors, which in turn would 
have some associated parameters. This may be a distinction that requires greater 
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attention in the future. It may be possible to use hidden rates models (Beaulieu & 
O’Meara 2014) to tease apart ‘genetic-looking’ and ‘areal-looking’ change, at least 
to some extent, and it may ultimately be possible to explicitly model changes in 
evolutionary behavior as a function of the phylogeographic location of various 
locations on the tree. What we have presented has the advantage of diagnosing 
potentially contact-induced behavior among related languages. We have inferred 
all changes via a genetic model but have used phylogeographic information to di-
agnose which developments are more areally clustered together. With this model, 
we have taken an important step toward a fuller and more inclusive understanding 
of linguistic change.

Appendices

The appendices can be found online at: https://doi.org/10.1075/dia.16035.cat.additional
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Résumé

Cet article traite de la dynamique évolutionnaire et spatiale des caractéristiques typologiques 
dans 117 langues indo-européennes. Trois catégories de développements linguistiques ont été 
établies: (1) simplification, (2) neutralisation, et (3) complexification. Nous constatons que les 
développements qui créent de la complexité démontrent un niveau de concentration spatiotem-
porelle inférieur, de façon significative, par rapport aux deux autres types de changement. Ce 
résultat est compatible avec une situation dans laquelle certains changements proviendraient de 
contacts bilatéraux et de contacts entre des communautés linguistiques proches géographique-
ment, tandis que les autres seraient purement aléatoires, et n’auraient aucun lien avec le degré de 
contact entre différentes communautés linguistiques.
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Zusammenfassung

Dieser Beitrag behandelt die evolutionäre und räumliche Entwicklung einiger typologischer 
Charak-teristika in 117 indoeuropäischen Sprachen. Wir untergliedern die Studie hinsicht-
lich der Kategorien des Sprachwandels, welcher bei jeder der untersuchten Varianten auftritt: 
(1)  Wandel, der zu einer Simplifizierung erlernter morphosyntaktischer Strukturen führt 
(2) neutraler Wandel (also weder Simplifizierung noch Komplexifizierung), und (3) Wandel, 
der eine komplexere Struktur mit sich bringt Dabei können wir beobachten, dass Wandelphä-
nomene, die zu einem Anstieg an Komplexität führen, gemäβ der von uns entwickelten Me-
trik signifikant weniger räumliche Ausprägungen zeigen als Simplifizierungen und neutraler 
Wandel; allerdings finden wir keine signifikanten Unterschiede innerhalb der letzten beiden 
Gruppen. Dieses Ergebnis lässt sich verbinden mit einem Szenario, bei dem bestimmte Typen 
des Sprachwandels eher durch Advergenz und Kontakt zwischen benach-barten Sprachgemein-
schaften vermittelt wird, während andere Entwicklungen lediglich auf Drift zurückzuführen 
und groβenteils unabhängig von interkulturellem Kontakt sind.
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