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The last few years have witnessed a surge in the interest of a new machine trans-
lation paradigm: neural machine translation (NMT). Neural machine translation 
is starting to displace its corpus-based predecessor, statistical machine transla-
tion (SMT). In this paper, I introduce NMT, and explain in detail, without the 
mathematical complexity, how neural machine translation systems work, how 
they are trained, and their main differences with SMT systems. The paper will 
try to decipher NMT jargon such as “distributed representations”, “deep learn-
ing”, “word embeddings”, “vectors”, “layers”, “weights”, “encoder”, “decoder”, and 
“attention”, and build upon these concepts, so that individual translators and 
professionals working for the translation industry as well as students and aca-
demics in translation studies can make sense of this new technology and know 
what to expect from it. Aspects such as how NMT output differs from SMT, and 
the hardware and software requirements of NMT, both at training time and at 
run time, on the translation industry, will be discussed.
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1. Introduction

The last few years have witnessed a surge in the interest of a new machine trans-
lation paradigm: neural machine translation (NMT), which is beginning to dis-
place its corpus-based predecessor, statistical machine translation (SMT). For 
the potential of this technology to be fully realized in professional translation, 
the involvement of professionals is crucial;1 involvement can only occur through 

1. Way and Hearne (2011) worded this quite clearly in the abstract of their paper about statisti-
cal machine translation, the current dominant technology: “If [linguists and translators] are to 
make an impact in the field of MT, they need to know how their input is used by the [statistical 
machine translation] systems”. This involvement of translators and linguists is also crucial now 
that NMT is challenging the dominant position of SMT.
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understanding. This paper tries to help individual translators and professionals 
working for the translation industry as well as students and academics in transla-
tion studies make as much sense of NMT as is possible without a mathematical 
background, by deciphering NMT jargon such as “distributed representations”, 
“word embeddings”, “vectors”, “layers”, “weights”, “encoder”, “decoder” and “atten-
tion” and then building upon these concepts (Section 2), so that professionals may 
be aware of what to expect of NMT (Section 3): in which sense it is different from 
SMT; its hardware and software requirements; and how it may change the way in 
which translators work. Concluding remarks (Section 4) wrap up the paper.

2. What is neural machine translation and how does it work?

2.1 Neural machine translation is corpus-based machine translation

Neural machine translation is a new breed of corpus-based machine translation 
(also called data-driven or, less often, corpus-driven machine translation). It is 
trained on huge corpora of pairs of source-language segments (usually sentences) 
and their translations, that is, basically from huge translation memories contain-
ing hundreds of thousands or even millions of translation units. In this sense, it is 
similar to the statistical machine translation technology that was the state of the 
art until very recently, but uses a completely different computational approach: 
neural networks.

2.2 Neural machine translation uses neural networks

Neural machine translation has, in spite of its name, only a very vague connection 
to neurons or to the way people’s brains (or translators’ brains) work. The name 
comes from the fact that the neural networks (which should properly be called 
artificial neural networks) on which NMT is based are composed of thousands of 
artificial units that resemble neurons in that their output or activation (that is, the 
degree to which they are excited or inhibited) depends on the stimuli they receive 
from other neurons and the strength of the connections along which these stimuli 
are passed. This section describes these neurons and the way in which they repre-
sent knowledge.

2.2.1 Neural units or neurons
As mentioned, neural networks are sets of connected neurons, which are basically 
defined by their behaviour. Most neural units or neurons used in NMT operate in 
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two steps when they decide their state or activation. Imagine we are computing the 
activation x of a neuron connected to N neurons numbered 1, 2, 3, …, N.

In the first step, the activations or states of neurons connected to it (which we 
will call x1, x2, x3, …, xN) are added, but first each one is multiplied by a weight 
representing the strength and nature of their connection: w1, w2, w3, …, wN; a bias 
(b, representing the tendency of the neuron to be excited) is commonly added to 
the total. These weights can be positive or negative: when the stimulus is received 
through a connection with a positive weight, an excited neuron tends to excite 
the neuron it is connected to; when the stimulus is received through a connection 
with negative weight, an excited neuron tends to inhibit the neuron it is connected 
to. The result,

y = w1×x1 + w2×x2 + w3×x3 + … + wN×xN + b,

is a number that can take any possible negative or positive value, but is not yet 
the activation x of the neuron. Activations are usually bound in some way; for 
instance, between 0 and 1 or between −1 and +1, or always positive.

Therefore, in the second step, an activation function maps values of y onto 
values of x. Many different kinds of activation functions are possible. One com-
mon activation function is the logistic (sometimes called sigmoid) function which 
takes values between 0 and 1 and has the form shown in Figure 1. That is, when 
the weighted input y becomes more and more negative, the activation x takes a 
value that very slowly approaches zero; when y is zero, the activation takes a value 
of 0.5, and as y becomes more and more positive, x slowly approaches 1. The hy-
perbolic tangent activation function has a very similar shape to that of the logistic 
activation function but varies instead between −1 and 1. Another very popular 
activation function is called ReLU or rectified linear unit, shown in Figure 2. If y is 
positive, x equals y. If y is negative, x is simply zero.

In most neural network architectures, the activations of individual neurons do 
not make sense by themselves, but rather when grouped with the activations of the 
other neurons, as will be described in the next section.

2.2.2 Grouping units into layers to learn distributed representations
In NMT, words or sub-word units such as characters or short character sequences2 
are processed in a parallel, distributed way: the actual activation states of each neu-
ron in large sets of neurons are trained to build distributed representations of words 
and their contexts, both in the context of the source sentence being processed and 

2. The process to turn text into a series of these sub-word character sequences (sometimes 
called “byte pair encoding”: Sennrich, Haddow and Birch 2016) allows NMT systems to deal 
with new words they have not seen during training.
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in the context of the target sentence being produced. A representation is a snap-
shot of the activation states of each neuron in a specific group of them, usually 
called a layer: a fixed-size list (a vector) of quantities such as (+0.3, 0, −0.23, +0.01, 
−0.99, …). The actual translation output is produced from these representations.
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Figure 1. The logistic activation function
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Figure 2. The ReLU activation function
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To get an idea of how vectors may be used to represent knowledge, imagine 
a rectangular room perfectly aligned with the compass points. Any point inside 
the room could be located from the southwest corner of the room (“the origin”) 
using three numbers: how many centimeters far north, how many centimeters far 
east, and how many centimeters high above the floor. For instance, the position 
of the light bulb of the lamp on the nightstand could be represented with a three-
dimensional vector, for example “(70, 150, 87)”.3 Now imagine that, like the bulb, 
concepts (words, sentences) could be placed in the space inside that room: two 
similar concepts would ideally be close to each other and therefore have similar 
coordinates; very different concepts would be far apart from each other and there-
fore have different coordinates. Three dimensions are not enough for the richness 
observed in language: encodings of words and representations of sentences need 
many more dimensions to accommodate them and their mutual relationships, 
usually hundreds of them. It is hard for most of us to imagine spaces with more 
than three dimensions, but geometry and maths nicely extend beyond three di-
mensions, and so, computing and storing these representations is only a matter of 
computing power and memory.

Representations are usually deep (hence the buzzword deep learning): they are 
not built in one shot, but in stages from other shallower representations or layers. 
These layers usually contain hundreds of neural units: weights connect all units 
in one layer with all units in the next layer; the number of connections ranges 
in the thousands.

2.3 How does neural machine translation work?

2.3.1 Training
We want the neural network to read each source sentence to form distributed 
representations (values of activations of groups of neurons), such that outputs 
computed from them are as close as possible to the corresponding reference or 
gold-standard translations in the training set (ideally produced by translation 
professionals). To that end, one trains the neural network; that is, determines the 
weight or strength of each of the connections between neurons so that the de-
sired results are obtained. NMT usually requires very large training corpora, typi-
cally as large as those used in good old SMT, and its training (searching for the 
best value for all of the weights in the network) is computationally very demand-
ing: most NMT training resorts to using dedicated number-crunching hardware 
evolved from graphics processors, with typical training times ranging from days 
to months. During training, weights are modified in such a way that the value of a 

3. Negative values would be outside the room, south or west from it, or below it.
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specific error function or loss function describing how far the machine translation 
outputs are from the reference translations is made as small as possible. For that 
purpose, training algorithms are used that compute small corrections (updates) 
to weights that are repeatedly applied until the loss function is minimum or small 
enough. As probabilities are available for each possible word at each position of 
the target sentence (see Section 2.2.6 below), the system is often trained in such a 
way that it assigns the maximum likelihood to the whole reference translation for 
all of the source – target pairs in the training set.

2.3.2 Machine translation as predicting the next word
Most NMT systems are built and trained in such a way that they resemble a text 
completion device (analogous to the word prediction feature of smartphone key-
boards) which is informed by a representation of the source sentence, or, more 
specifically, by representations of each of the words of the source sentence in their 
context, built by the encoder part of the system. As a text completion device, a part 
of the system called the decoder provides, at each position of the target sentence 
being built, and for every possible word in the target vocabulary, the likelihood 
that the word is a continuation of what has already been produced. The best trans-
lation is usually built by picking the most likely word at each position. Based on 
this principle, but using the decoder to predict the best possible target word con-
sidering the part of the sentence that a professional translator has already typed, 
Peris et al. (2017) have proposed what they call interactive neural machine trans-
lation, a special kind of interactive machine translation or interactive translation 
prediction, which had customarily been performed so far using SMT instead of 
NMT.4 In these prediction–completion translation workflows, the system suggests 
possible continuations which may be accepted (using a hotkey such as the tabula-
tor key, “↹”) or ignored by the professional translators as they type the target text.

2.3.3 Representations for words and for longer segments of text
NMT (as with all neural computation) bases its power on the automatic learn-
ing of distributed representations, both for individual words, and for compound 
representations of parts of the sentence: these compound representations are 
computed (built) from the representations of smaller units, one unit at a time. 
Representations of individual words, or of sub-word units, (sometimes called em-
beddings) are usually learned from large monolingual texts by specialized neural 
networks that either learn to reproduce a specific word in a specific context from a 
few words to the right and to the left of it (sometimes called continuous bag-of-words 

4. The pioneering interactive translation prediction work is that by Foster, Isabelle and 
Plamondon (1997).
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embeddings, Mikolov et al. 2013a) or learn to predict a few words to the right and 
to the left of a word from the word itself (called skip-gram embeddings, see also 
Mikolov et al. 2013a). Embeddings naturally show interesting semantic properties: 
semantically similar words are assigned similar representations, so similar that 
they even allow for ‘semantic arithmetics’: if e(‘word’) is the vector representation 
of ‘word’ (remember, a vector is a fixed-length list of numbers), then the formula 
e(‘queen’) – e(‘woman’)+e(‘man’) (where vectors are added or subtracted neuron 
by neuron, much like columns in a spreadsheet) often yields a vector that is very 
similar to e(‘king’), as one would expect (Mikolov et al. 2013b).

For an NMT system, therefore, translating means encoding and decoding: 
How does NMT encode a source sentence and then decode it into a target sentence? 
In the most common NMT architecture, this proceeds in a recursive way. The next 
sections describe how in a bit more detail.

2.3.4 Encoding
First, let’s consider encoding of the source sentence: Imagine we want to translate 
the sentence ‘My flight is delayed.’ into Spanish. A representation for the sentence 
is recursively formed from the vector embeddings of individual words, e(‘my’), 
e(‘flight’), e(‘is’), e(‘delayed’) and e(‘.’) as follows (note that we use “e(…)” as a short-
hand notation for an encoding vector that may have hundreds of components):

1. The encoder network combines a preexisting (pre-learned) encoding for the 
empty sentence E(‘’) with the embedding of the first word e(‘my’) to produce 
an encoding E(‘My’).

2. Then the encoder network combines the representation of E(‘My’) and the 
embedding of e(‘flight’) to produce the encoding E(‘My flight’).

3. In successive steps, E(‘My flight’) and e(‘is’) lead to E(‘My flight is’), etc., until 
a representation for the whole sentence E(‘My flight is delayed .’) is obtained.

In neural parlance, such a network is said to be a discrete-time recurrent neural 
network: it is repeatedly applied and part of the output computed in one step is 
fed back to the next step. Encoders arrange their layers in specific gating structures 
that are endowed with a certain capability to learn to forget past inputs which are 
not relevant at a certain point or to remember past inputs. The most commonly 
used gating configurations are long-short term memories (LSTM: Hochreiter and 
Schmidhuber 1997) and gated recurrent units (GRU: Cho et al. 2014). The encod-
ing process is exemplified in Figure 3 (not all steps are shown).
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Figure 3. Encoding of sentence “My flight is delayed.”

An additional reverse encoder (not shown) may be added, which reads the sen-
tence right to left (that is, ‘. delayed is flight My’) and produces a reverse encoding 
E’(‘My flight is delayed.’) from e(‘my’) and E(‘flight is delayed.’), which in turn is 
produced from E’(‘is delayed.’) and e(‘flight’), etc. We will assume that existing rep-
resentations at each position of the source sentence (the direct one and the reverse 
one) are combined in some way (for instance, by putting the direct and the reverse 
vectors side by side next to each other to make a longer vector).

2.3.5 Decoding
Now, let us consider decoding. The simplest decoder (one without attention in 
NMT jargon, see Section 2.3.1) works as follows:

1. Starting from the encoding of the whole sentence E(‘My flight is delayed.’), 
the decoder produces two vectors: one is an initial decoder state D(‘My flight 
is delayed’,‘’), where ‘’ represents an empty sequence of target words, and a 
vector of probabilities for all possible words x in the first position of the target 
sentence, p(x|‘My flight is delayed’,‘’). A well-trained decoder would assign the 
maximum likelihood to Spanish word x=‘Mi’. The word ‘Mi’ is therefore output.

2. The decoder reads D(‘My flight is delayed’,‘’) and the word ‘Mi’, and produces 
two vectors: the next decoder state D(‘My flight is delayed’,‘Mi’) and a vector 
of probabilities of all possible output words x in the second position of the 
sentence, p(x|‘My flight is delayed’,‘Mi’). A well-trained decoder would assign 
the maximum likelihood to the Spanish word ‘vuelo’. The word x=‘vuelo’ is 
therefore output.

3. In successive steps, D(‘My flight is delayed’,‘Mi’) combined with ‘vuelo’ leads to 
D(‘My flight is delayed’, ‘Mi vuelo’) and a p(x|‘My flight is delayed’, ‘Mi vuelo’); 
let’s say that the most likely x is ‘lleva’; then D(‘My flight is delayed’, ‘Mi vuelo’) 
is combined with ‘lleva’ and leads to D(‘My flight is delayed’, ‘Mi vuelo lleva’) 
and a p(x|‘My flight is delayed’, ‘Mi vuelo lleva’), etc. All of this until the output 
‘Mi vuelo lleva retraso.’ is produced and the most likely next word happens to 
be an end-of-decoding marker.
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The decoding process is depicted in Figure 4.
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x=”trade” 0071 
x=“hay” 0.009 

...

Figure 4. Decoding into Spanish of the representation of the English sentence “My flight 
is delayed.”

2.4 Extensions and alternative neural machine translation architectures

2.4.1 Attention
The above paragraphs describe one of the typical NMT designs or architectures, 
aptly called the encoder–decoder architecture, or sometimes the seq2seq (“se-
quence to sequence”) architecture (Sutskever et al. 2014).5 The decoder–encoder 
architecture was almost immediately extended (Bahdanau et al. 2014) with a de-
vice called attention: the decoder pays attention (responds) not only to the last rep-
resentation built by the encoder (in our example, E(‘My flight is delayed.’)) but also 
to the whole sequence of representations built during encoding (E(‘My’), E(‘My 
flight’), etc.) through an appropriate additional set of neural connections and 
layers. The recurrent decoder–encoder architecture with attention, using either 
LSTM or GRU gating structures may be considered to be the bread-and-butter 
of NMT in 2017.

2.4.2 “Convolutional” neural machine translation
There are however more recent approaches to NMT that do not use the recur-
rent encoder–decoder architecture described here, but instead use what is called a 
convolutional architecture (Gehring et al. 2017). Instead of producing an encoding 
of the whole source sentence by recursively ingesting the embeddings of source 
words one by one, their decoder produces representations of each word by taking 
into account a few words (let’s say 2) to the left and to the right of it. For instance, 
our sentence ‘My flight is delayed’, conveniently padded to form ‘NULL NULL My 

5. The encoder – decoder approach is coincidentally similar to the Recursive Hetero-Associative 
Memories proposed two decades ago by the author (Forcada and Ñeco 1997).
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flight is delayed . NULL NULL’ is turned into a series of context-informed repre-
sentations R(‘NULL NULL My flight is’), R(‘NULL My flight is delayed’), R(‘My 
flight is delayed .’), R(‘flight is delayed . NULL’), and R(‘is delayed . NULL NULL’); 
then, these representations are taken again in groups of 5 and used to generate a 
series of deeper representations; this is repeated (convoluted) a couple of times. 
Then a similar scheme is used to generate representations of output words: start-
ing with the representation of an initial left-padding, such as ‘NULL NULL NULL’, 
and paying attention to the representations generated by the encoder, it predicts 
the next word: ‘Mi’. The three-word window is displaced right by appending the 
predicted word, and a representation for ‘NULL NULL Mi’ is built, which is used 
to predict the next word ‘vuelo’, etc.

2.4.3 Doing away with recursion and convolution: is attention all you need?
But the last word has not yet been said about NMT architectures. Just as these 
lines were being written (June 2017), a new NMT architecture using only atten-
tion mechanisms (attention between source words, between the target words be-
ing generated, and between source and target words) has been proposed (Vaswani 
et al. 2017). These new NMT systems seem to obtain similar results to the above 
architectures with a fraction of the computational resources. While the field ex-
plores the capabilities of each possible architecture, most real-world applications 
are still using encoder–decoder architectures with attention.

2.5 Main differences between neural and statistical machine translation

SMT was, until very recently, the undisputed state-of-the-art in machine transla-
tion—with rule-based (or knowledge-based) machine translation (Forcada 2010, 
Section 3.2) still being used in some real-world applications.6 But currently, NMT 
is challenging that hegemony.

In both NMT and SMT, a target sentence is a translation of a source sentence 
with a certain probability of likelihood; in principle, all target sentences can be a 
translation of a source sentence, but we are interested in the most likely one. In 
both NMT and SMT, decoding (the same name is used) selects the most likely 
target sentence (or at least one of the most likely ones, as an exhaustive search is 
usually not possible).

In NMT, the likelihood of the target sentence is computed by looking at the 
likelihood of each target word given the source sentence and the preceding words 

6. For an accessible introduction on how SMT works, see Forcada (2010, Section 3.3.2) and 
Hearne and Way (2011); a companion paper to the latter by Way and Hearne (2011) discusses 
the role of translators in the advancement of SMT, seen as the “state of the art” at that time.
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in the target sentence; the decoding mechanism, using information from the 
source sentence – processed by encoding and attention neural networks – pro-
vides this likelihood, and the most likely word is selected at each step. The whole 
process is performed by a single (“monolithic”)7 large neural network whose con-
nection weights are all jointly trained.

In contrast, SMT builds translations by stringing together the translations of 
clearly identified subsegments (usually called phrases).8 These phrase pairs (source 
subsegment, target subsegment) are obtained during training by parallel corpora 
by first aligning their source words to their target words using probabilities learned 
from the bilingual corpus, and then identifying source and target phrases that are 
compatible with the alignments of their individual words. Phrase pairs in the trans-
lation table come with a number of scores computed from these word alignments. 
Therefore, training occurs in two phases (which are not jointly learned): align-
ment and phrase extraction. During translation, each source sentence is chopped 
into source phrases (usually in many possible ways), the phrases are looked up 
in the translation table, and their translations are strung together in a number 
of plausible ways to form candidate translations of the whole sentence. Phrase-
pair scores and target language probabilities obtained from very large amounts of 
monolingual target text are combined to compute the likelihood of each candidate 
translation, to select the best one.9

This leads to a very important difference. Unlike in SMT, in NMT the identifi-
cation of subsegments and their translations is not straightforward: the raw trans-
lation is produced word by word taking the whole source segment into account. 
This is clearly visible if one uses Google Translate, which is migrating from SMT 
to NMT.10 For language pairs that still use SMT, the correspondences between 
source and target phrases may be revealed when the mouse hovers over the target 
sentences; for language pairs using NMT, whole sentences are highlighted instead. 
Possible errors in NMT are therefore much harder to trace back to phrase-pairs 
found in the bilingual corpus used to train the system.

7. The term is borrowed from electronic hardware parlance, where a monolithic system is one in 
which all of the components are built together in the same integrated circuit.

8. They are called phrases (Koehn 2010, 127) even if they are not syntactic units in the linguistic 
sense.

9. The weight assigned to each one of the scores when computing the likelihood of the whole 
sentence is determined using a small development set of a few thousand sentence pairs.

10. http://translate.google.com: language pairs are being migrated from statistical to NMT, but 
migration is not complete as these lines are written. In those language pairs using neural transla-
tion it is no longer possible to hover over target words to see the source words they correspond 
to, as is possible for language pairs using phrase-based SMT.

http://translate.google.com
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3. What can translators expect from neural machine translation?

Although NMT is relatively young, it is already being deployed as part of online 
translation systems (such as Google Translate), internally being used inside major 
international corporations (such as Booking.com, Levin et al. [2017]) or to offer 
translation services (such as those offered by KantanMT, Shterionov et al. 2017). 
As a result, a number of studies have been published which can give an idea of 
what can be expected.

3.1 High computational requirements

NMT systems are hard to train, even harder than SMT systems, which already 
required parallel corpora that are not usually available to individual translators or 
even small translation agencies. These parallel corpora are much larger than the 
usual translation memories. Dedicated hardware (such as GPUs, originally used 
as graphic processing units, hence the name) is needed, and training times (days, 
weeks, months) may be too long for some applications.

There are a number of freely available NMT toolkits with very friendly user 
licenses such as OpenNMT,11 Sennrich et al.’s (2017) Nematus,12 AmuNMT,13 or 
Neural Monkey,14 but installing, configuring, and using them requires skills that 
are not usually possessed by professional translators, even if one has access to the 
kind of specialized hardware needed.

But even once trained, machine translation (“decoding”) may be too slow on 
regular desktop or laptop machines: therefore, in computer-aided translation en-
vironments, interactive, real-time usage (machine translation output being pro-
duced on demand, much as translation memory fuzzy matches are) may be very 
difficult and one would have to turn to batch usage (that is, using precomputed ma-
chine translation output), with the corresponding change in translation workflow.

Machine translation companies which offered customers the possibility to 
build an SMT system from their translation memories and from stock parallel cor-
pora, and then run the resulting system on the customer’s documents, are starting 
to offer NMT too.

11. http://opennmt.net/

12. https://github.com/rsennrich/nematus

13. https://amunmt.github.io/features/

14. http://neural-monkey.readthedocs.io/en/latest

http://opennmt.net/
https://github.com/rsennrich/nematus
https://amunmt.github.io/features/
http://neural-monkey.readthedocs.io/en/latest
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If, however, access to adequate hardware of sufficient power is actually pos-
sible, the nature of decoding in NMT naturally lends itself to interactive transla-
tion completion workflows.

3.2 A different kind of output

The output of NMT systems is, in many respects, similar to that produced by SMT 
systems. Some annoying problems inherent to corpus-based machine transla-
tion such as inconsistencies in numerical expressions and URLs, mistranslation 
of proper nouns (particularly compound proper nouns such as United Nations or 
Bank of England), terminological inconsistencies, misplacing of formatting tags, 
etc., are still there. But NMT output is different in some respects.

Due to the semantic nature of learned representations, errors are usually se-
mantically motivated; for instance, the wrong country may be obtained, such as 
Norway instead of Tunisia, as found by Arthur et al. (2016), who class this kind of 
error as “particularly serious because the content words that are often mistrans-
lated […] are also the words that play a key role in determining the whole meaning 
of the sentence.” This kind of error therefore requires a specific kind of attention 
on the part of the post-editor.

Systems using sub-word units—which may be linguistically motivated but 
more often are not—instead of whole words may resort to being creative when 
it comes to translating a word they have never seen during the training stage by 
piecing a translation together from sub-word units. Here are some examples from 
Czech–English machine translation:15

– The system is able to reconstruct an acceptable translation such as Elizabeth 
Picciuto (Czech Elizabeth Picciutová).

– The system produces a word that is very similar to what would be considered 
an adequate translation: denacification for denazification (Czech denacifikace), 
taequondo for taekwondo (Czech taekvondo), anisakiosis for anisakiasis (Czech 
akisakiózou, ‘with anisakiasis’), or compilating for compilation (Czech compi-
lací). For examples like these, post-editing is straightforward but necessary.

– The system invents a reasonable word such as multifight for multisport (Czech 
víceboje), yachtamaker for yachtwoman (Czech Jachtařku), restorer for restau-
rateur (Czech restaurátoří), or geolocator for GPS (Czech geolokátoru).

15. Examples provided by Barry Haddow (2017, personal communication) from the actual out-
put of a system using byte-pair encoding sub-word units.
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– The system gets confused and produces the wrong form of proper nouns: 
Raction for the middle-eastern city of Raqqa (Czech v Rakce ‘in Raqqa’), Aveir 
for the Portuguese city of Aveiro (Czech u Aveiru, ‘in Aveiro’).

– The system produces partly translated words which are hard to recognize such 
as vruts for pikes (Czech vruty), nalect for discovery or finding (Czech nalezení) 
or revante for revenge (Czech revanš).

Up until now, sub-word units were very unusual and this kind of output was sel-
dom produced by any of the existing technologies (rule-based machine transla-
tion, SMT). So far, machine translation output contained either target words seen 
during training or untranslated source words; if sub-word NMT is used, post-
editors need to be able to spot and deal with new types of mistranslation that, up 
to now, they may not have encountered.

3.3 Is neural machine translation better than statistical machine translation?

At this point, it is perfectly legitimate to ask: is NMT better than its corpus-based 
predecessor, SMT? It is the case that NMT systems participating in international 
shared-task contests16 have shown to produce the best results as regards subjec-
tive direct assessments and automatic evaluation measures that roughly compare 
them to preexisting reference translations, but reliable measurements of the im-
provement in their actual impact in translator productivity when used as a starting 
point for a post-editing job are still to be made. Recently, Google adopted NMT 
for a few of its language pairs (Wu et al. 2017), in a move that was accompanied by 
considerable hype, which did not go down too well in some sectors of the machine 
translation community (Vashee 2016).

3.3.1 Automatic evaluation
Automatic evaluation measures, which compare the output of the machine trans-
lation to usually a single independent professional translation called a reference 
translation using text similarity measures such as the fraction of matching one-, 
two-, three- and four-word sequences,17 very often give NMT a definite advantage 

16. Such as those proposed by WMT, the Conference on Machine Translation, formerly 
Workshop on [statistical] Machine Translation (see http://www.statmt.org/wmt17/ for the 2017 
edition).

17. A well-known measure called BLEU (Papineni et al. 2002) computes these four matching 
fractions and takes the geometric average. The result is a number between 0 and 1, sometimes 
reported as BLEU points on a scale from 0 to 100.

http://www.statmt.org/wmt17/
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(see e.g., Toral and Sánchez-Cartagena 2017); this advantage, however, is reduced 
(see also Bentivogli et al. 2016) when sentences get very long (30 words).

Adequate translations usually require placing the equivalents of source words 
in a completely different order. Automatic analysis finds that NMT (Toral and 
Sánchez-Cartagena 2017; Bentivogli et  al. 2016) produces reorderings that re-
semble more those of reference sentences than those produced by SMT (the latter 
paper reports a 50% decrease in “word order errors”). In an English–German task, 
Bentivogli et al. (2016) also found that NMT produces “less morphology errors 
(−19%) [and] less lexical errors (−17%)” than SMT.

3.3.2 Subjective evaluation
Manual evaluation, that is, subjective assessment of output fluency (a monolin-
gual measure of quality) usually shows NMT output to be much more fluent than 
its SMT counterpart (Bojar et al. 2016, Section 3.5); automatic evaluation results 
are consistent with this finding (Toral and Sánchez-Cartagena 2017). Note that a 
translation can be very fluent but may not be adequate in the sense that it does not 
have the same meaning as the original sentence.

3.3.3 Measuring post-editing effort and productivity
Measurements of the actual usefulness of NMT for professional translators are 
still very scarce (they are generally quite scarce even for older machine translation 
technologies), but some preliminary results have started to emerge, particularly 
those of comparisons between NMT and the current state of the art, phrase-based 
SMT. Bentivogli et al. (2016) show that NMT “generates outputs that considerably 
lower the overall post-edit effort with respect to the best [phrase-based SMT] sys-
tem” in an English–German machine translation task. When post-editing effort 
was approximated as the minimum number of insertions, deletions or substitu-
tions of one word, or shifts of whole blocks of words needed to turn machine 
translation output into an adequate text, the gain was observed to be 26%. Note, 
however, that the amount of post-editing is only an approximation to actual post-
editing effort, as it does not take into account, for instance, post-editing time.

In a more recent paper, Castilho et al. (2017) compared the effort when post-
editing statistical and NMT output from English into German, Greek, Portuguese 
and Russian, using systems trained on the same data; they measured editing time, 
and technical post-editing effort, that is, the actual number of post-editing key-
strokes. As regards the number of segments (sentences) requiring no editing, dif-
ferences were not statistically significant except when translating into German, 
where NMT had an advantage. Post-editing time (or its reverse, throughput in 
words per second) was only marginally better for NMT, except when translat-
ing into Russian. Finally, technical effort (number of keystrokes or minimum 
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number of edits as in Bentivogli et al. 2016) was reduced for all target languages 
when using NMT.

These findings, while promising for a technology that only started to be avail-
able three years ago, are still inconsistent, and more extensive testing should be 
performed. The results of any comparison between an SMT and an NMT system 
may vary depending on how similar the training data are to the actual texts to be 
translated, the language pair, and the specific machine translation configurations 
used.

4. Concluding remarks

Neural machine translation is the new machine translation paradigm, currently 
a direct competitor with statistical machine translation, and to some extent with 
rule-based (or knowledge-based) machine translation. As many translators are 
likely to translate by post-editing the output of machine translation, it is crucial 
for them to be aware of the latest machine translation approach.

A description of NMT (its architecture and how it functions), which avoids 
mathematical details as much as possible, has been presented after a quick expla-
nation of how artificial neurons and artificial neural networks work, while try-
ing to decipher concepts such as embeddings, encoding, decoding, attention, etc. in 
terms which are hopefully accessible to translators.

The implications for translators have also been discussed, focusing on the 
computational requirements of NMT, the nature of the output it produces, and a 
comparison between this new machine translation technology and existing statis-
tical machine translation.
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