Standard elementary logic studies the deductive inferences which rest on two sets of logical constants: the connectives ‘not’, ‘and’, ‘either … or …’, ‘if … then …’ and the quantifiers ‘all’ and ‘some’. Modal logic extends the logical lexicon in order to account for the validity or non-validity of inferences which depends on the presence of modal terms such as ‘necessarily’ or ‘possibly’. With respect to arguments involving these terms, intuition cannot be trusted. Even the best logicians and philosophers fall prey to fallacies in this area. For instance, Etchemendy (1990: 87) discovered a hidden fallacious move in Tarski’s account of logical consequence, where he went from a statement of the form ‘Necessarily if p and q, then not r’ to a statement of the form ‘if p then necessarily if q then not r’. Anscombe (1959: 138) spotted another unsound move in a famous monograph on epistemology:
References
Ackrill, J.L.
(ed.)1963Aristotle’s Categories and De interpretatione. Oxford University Press.
Anscombe, G.E.M.
1959An introduction to Wittgensteins’s Tractatus. Hutchinson.
Aristotle: see Ackrill
(ed.)1963 and Ross (ed.) 1928..
Bailhache, P.
1991Essai de logique déontique. Vrin.
Barcan Marcus, R.
1946A functional calculus of first order based on strict implication. The Journal of Symbolic Logic 11: 1–17.
Barcan Marcus, R.
1993Modalities. Oxford University Press.
Van Benthem, J.
1977Tense logic and standard logic. Logique et Analyse 80: 395–437.
Van Benthem, J.
1983aThe logic of time. Reidel.
Van Benthem, J.
1983bModal logic and classical logic. Bibliopolis.
Bressan, A.
1972A general interpreted modal calculus. Yale University Press.
Boolos, G.
1993The logic of provability. Cambridge University Press.
Catach, L.
1991Tableaux: A general theorem prover for modal logics. Journal of Automated Reasoning 7: 489–510.
Chellas, B.
1980Modal logic. Cambridge University Press.
Cresswell, M.J.
1990Entities and indices. Kluwer.
Etchemendy, J.
1990The concept of logical consequence. Harvard University Press.
Feys, R.
1965Modal logics. Nauwelaerts.
Fitting, M.
1983Proof methods for modal and intuitionistic logics. Reidel.
Fitting, M.
1993Basic modal logic. In D. Gabbayet al. (eds.) Handbook of logic in artificial intelligence and logic programming: 368–448. Oxford University Press.
Gabbay, D.
1976Investigations in modal and tense logics. Reidel.
Gabbay, D. & F. Guenthner
(eds.)1984Handbook of philosophical logic. vol. 2. Reidel. BoP
Gabbay, D
et al.1994Temporal logic. Oxford University Press.
Gardies, J-L.
1979Essai sur la logique des modalités. PUF.
Gillet, E. & P. Gochet
1994A new approach to logical omniscience. Calculemos.
Goldblatt, R.
1992Logics of time and computation. Center for the Study of Language and Information, Stanford.
Halpern, J. & Y.O. Moses
1985A guide to the modal logics of knowledge and belief. IJCAI: 480–490.
Hintikka, J.
1962Knowledge and belief. Cornell University Press.
Hughes, G.E. & M.J. Cresswell
1968An introduction to modal logic. Methuen.
Lemmon, E.J.
1977An introduction to modal logic. Blackwell.
Lewis, I. & C.H. Langford
1932Symbolic logic. Dover.
Lyons, J.
1977Semantics, vol. 2. Cambridge University Press. BoP
Mcarthur, R.
1976Tense logic. Reidel.
Mints, G.
1992A short introduction to modal logic. Center for the Study of Language and Information, Stanford.
Moisil, G.
1972Essai sur les logiques non chrysipiennes. Académie Socialiste de Roumanie.