Automatic term recognition and legal language: A shorter path to the lexical profiling of legal texts?
1.Introduction
Specialized terminology plays a pivotal role in languages which are used for specific purposes (LSP) and its definition has been envisaged from numerous perspectives. It has often been conceptualized as a vehicle of communication amongst specialists which conveys “domain-specific key concepts in a subject field that crystallize our expert knowledge in that subject” (Kit, and Liu 2008Kit, Chunyu and Xiaoyue Liu 2008 “Measuring Mono-word Termhood by Rank Difference via Corpus Comparison.” Terminology 14(2):204–229. , 204), in other words, terms are regarded as “textual realisation[s] of a specialized concept” (Spasic et al. 2005Spasic, Irena, Sophia Ananiadou, John McNaught, and Anand Kumar 2005 “Text Mining and Ontologies in Biomedicine: Making Sense of Raw Text.” Brief Bioinform 6(3):239–251. , 240).
As Cabré (1999)Cabré Castellví, Maria Teresa 1999 Terminology: Theory, Methods and Applications. Amsterdam: John Benjamins. also acknowledges, the concept of term is a multifaceted construct, since terms display specific semantic and pragmatic traits which are shared by the general and specialized fields of language. Nevertheless, they can be distinguished owing to their capacity to “designate concepts pertaining to special disciplines and activities” (1999Cabré Castellví, Maria Teresa 1999 Terminology: Theory, Methods and Applications. Amsterdam: John Benjamins. , 81). In that vein, Chung (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. introduces a complementary perspective on the study of terms which articulates itself around the dichotomy between the qualitative and quantitative character of these lexical units, emphasizing the saliency of the statistical data which terms are associated with.
Terms might also be employed for the identification of thematic areas in specialized corpora by, for instance, using them as a point of departure to obtain the collocate networks that revolve around them or simply by classifying them into thematic groups and basing their examination on their statistical relevance, hence their significance in lexical analysis. However, handling and manually processing large corpora in search of specialized terms might become an unattainable task which would necessarily require the systematization if not automatization of the process. ATR methods such as Chung’s (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. , Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. or Scott’s (2008a)Scott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software. allow the user to retrieve a list of CTs from a specialized corpus when contrasted with a collection of general language texts relatively easily (Chung’s method must be applied manually). Yet, the validation of CT inventories becomes essential in order for the methods’ precision to be tested, being often performed by comparison with a gold standard, that is, a specialized term glossary which facilitates the assessment of the lists of terms extracted. This process should ideally be supported by human validation as long as the lists of terms are not excessively numerous.
Given the scarcity of research devoted to the study and assessment of ATR methods in the legal field, this chapter seeks to explore in detail three of these methods (Chung 2003Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. ; Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ; Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) after their implementation on two corpora of Spanish and British judicial decisions on immigration with the aim of establishing their degree of precision in term retrieval, as presented in Sections 3.1, 3.3 and 4.1.
Along these lines, ATR techniques may also signal major thematic areas that corpora revolve around other than legal terminology, as already stated. Scrutinizing the term inventories which are produced by ATR methods to identify the most representative topics in a corpus might also be another advantage of using ATR techniques for the lexical profiling of legal texts. Section 4.2 was thus designed to that end by introducing an analysis of the thematic areas which the terms retrieved from both corpora could be classified into. On the one hand, the top 500 terms extracted by each ATR method were divided into four ad hoc categories, namely, legal terms, territory, evaluative items, family and crime. Then, the percentage of terms identified by each method which fell into each category was calculated and compared across methods. On the other hand, an automatic text classification software, UMUTextStats (García-Díaz et al. 2018García-Díaz, José Antonio, María Pilar Salas-Zárate, María Luisa Hernández-Alcaraz, Rafael Valencia-García, and Juan Miguel Gómez-Berbís 2018 “Machine Learning Based Sentiment Analysis on Spanish Financial Tweets.” In Trends and Advances in Information Systems and Technologies (WorldCIST’18 2018). Advances in Intelligent Systems and Computing, Vol. 745, edited by Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis and Sandra Costanzo, 305–311. Springer: Cham. ; García-Díaz, Cánovas-García, and Valencia-García 2020García-Díaz, José Antonio, Mar Cánovas-García, and Rafael Valencia-García 2020 “Ontology-driven Aspect-based Sentiment Analysis Classification: An Infodemiological Case Study Regarding Infectious Diseases in Latin America.” Future Generation Computer Systems 112:641–657. ), was implemented on both corpora and the proportion of items belonging in each of the morphosemantic categories included in the software was determined as a way of comparison with the procedure described above, which resorts to ATR as the basis for thematic classification.
2.ATR and legal language
The literature on ATR methods and software tools has been profusely reviewed (Cabré et al. 2001Cabré Castellví, Maria Teresa, Rosa Estopà Bagot, and Jordi Vivaldi Palatresi 2001 “Automatic Term Detection: A Review of Current Systems.” In Recent Advances in Computational Terminology 2, edited by Dider Bourigault, Christian Jacquemin & Marie-Claude L’Homme, 53–87. Amsterdam: John Benjamins. ; Chung 2003a, 2003b; Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ; Lemay et al. 2005Lemay, Chantal, Marie-Claude L’Homme, and Patrick Drouin 2005 “Two Methods for Extracting ‘Specific’ Single-word Terms from Specialised Corpora: Experimentation and Evaluation.” International Journal of Corpus Linguistics 10(2):227–255. ; Maynard and Ananiadou 2000Maynard, Diana and Sophia Ananiadou 2000 “TRUCKS: A model for Automatic Multi-word Term Recognition.” Journal of Natural Language Processing 8(1):101–125. ; Kit, and Liu 2008Kit, Chunyu and Xiaoyue Liu 2008 “Measuring Mono-word Termhood by Rank Difference via Corpus Comparison.” Terminology 14(2):204–229. ; Pazienza et al. 2005Pazienza, Maria Teresa, Marco Pennacchiotti, and Fabio Massimo Zanzotto 2005 “Terminology Extraction: An Analysis of Linguistic and Statistical Approaches.” In Knowledge Mining. Studies in Fuzziness and Soft Computing, Vol. 185, edited by Spiros Sirmakessis, 255–279. Berlin: Springer. ; Vivaldi et al. 2012Vivaldi, Jorge, Luis Adrián Cabrera-Diego, Gerardo Sierra, and María Pozzi 2012 “Using Wikipedia to Validate the Terminology Found in a Corpus of Basic Textbooks.” In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC’12), edited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk and Stelios Piperidis, 3820–3827. European Language Resources Association (ELRA). Available at: http://www.lrec-conf.org/proceedings/lrec2012/index.html, to name but a few) often classifying them according to the type of information used to extract CTs automatically. Some of the reviewed methods resort to statistical information, amongst them: Church and Hanks (1990)Church, Kenneth and Patrick Hanks 1990 “Word Association Norms, Mutual Information, and Lexicography.” Computational Linguistics 16(1):22–29., Ahmad et al. (1994)Ahmad, Khurshid, Andrea Davies, Heather Fulford, and Margaret Rogers 1994 “What is a Term? The Semi-automatic Extraction of Terms from Text.” In Translation Studies: An Interdiscipline, edited by Mary Snell-Hornby, Franz Pöchhacker and Klaus Kaindl, 267–278. Amsterdam: John Benjamins. , Drouin (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. , Chung (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. , Fahmi et al. (2007)Fahmi, Ismail, Gosse Bouma, and Lonneke Van Der Plas 2007 “Improving Statistical method using known terms for automatic term extraction.” (conference talk). Conference: Computational Linguistics in the Netherlands (CLIN 17), November 2007 (unpublished)., Scott (2008) or Kit and Liu (2008)Kit, Chunyu and Xiaoyue Liu 2008 “Measuring Mono-word Termhood by Rank Difference via Corpus Comparison.” Terminology 14(2):204–229. . Other authors like Ananiadou (1988)Ananiadou, Sophia 1988 A Methodology for Automatic Term Recognition. PhD Thesis, University of Manchester Institute of Science and Technology: United Kingdom., David and Plante (1990)David, Sophie and Pierre Plante 1990 Termino 1.0. Research Report of Centre d’Analyse de Textes par Ordinateur. Montréal: Université du Québec., Bourigault (1992)Bourigault, Didier 1992 “Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases.” In COLING 1992 – Volume 3: The 14th International Conference on Computational Linguistics, 977–981. https://aclanthology.org/C92-3150.pdf. or Dagan and Church (1994)Dagan, Ido and Kenneth Church 1994 “Termight: Identifying and Translating Technical Terminology.” In Fourth Conference on Applied Natural Language Processing, 34–40. Association for Computational Linguistics. focus primarily on linguistic aspects. The so-called hybrid methods rely on both. The work of Justeson and Katz (1995)Justeson, John S. and Slava M. Katz 1995 “Technical Terminology: Some Linguistic Properties and an Algorithm for Identification in Text.” Natural Language Engineering 1(1):9–27. , Daille (1996)Daille, Béatrice 1996 “Study and Implementation of Combined Techniques for Automatic Extraction of Terminology.” In The Balancing Act: Combining Symbolic And Statistical Approaches To Language, edited by Judith L. Klavans and Philip Resnik, 49–66. Cambridge, MA: MIT Press., Frantzi and Ananiadou (1996Frantzi, Katerina T. and Sophia Ananiadou 1996 “Extracting Nested Collocations.” In COLING 1996 – Volume 1: The 16th International Conference on Computational Linguistics, 41–46. USA: Association for Computational Linguistics. https://aclanthology.org/C96-1009.pdf. , 2000 2000 “Automatic Recognition of Multi-Word Terms: the C-value/NC-value Method.” International Journal on Digital Libraries 3:115–130. ), Jaquemin (2001)Jacquemin, Christian 2001 Spotting and Discovering Terms through NLP. Massachusetts: MIT Press., Drouin (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. , Barrón Cedeño et al. (2009)Barrón-Cedeño, Alberto, Gerardo E. Sierra, Patrick Drouin, and Sophia Ananiadou 2009 “An Improved Automatic Term Recognition Method for Spanish.” In International Conference on Intelligent Text Processing and Computational Linguistics, edited by Alexander Gelbukh, 125–136. Berlin: Springer. or Loginova et al. (2012)Loginova, Elizaveta, Anita Gojun, Helena Blancafort, Marie Guégan, Tatiana Gornostay, and Ulrich Heid 2012 “Reference Lists for the Evaluation of Term Extraction Tools.” Paper at the 10th Terminology and Knowledge Engineering Conference: New Frontiers in the Constructive Symbiosis of Terminology and Knowledge Engineering (TKE 2012) , Madrid, Spain. https://hal.archives-ouvertes.fr/hal-00816566/document illustrate this trend. As stated by Vivaldi et al. (2012)Vivaldi, Jorge, Luis Adrián Cabrera-Diego, Gerardo Sierra, and María Pozzi 2012 “Using Wikipedia to Validate the Terminology Found in a Corpus of Basic Textbooks.” In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC’12), edited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk and Stelios Piperidis, 3820–3827. European Language Resources Association (ELRA). Available at: http://www.lrec-conf.org/proceedings/lrec2012/index.html, not many of these methods resort to semantic knowledge, namely, TRUCKS (Maynard, and Ananiadou 2000Maynard, Diana and Sophia Ananiadou 2000 “TRUCKS: A model for Automatic Multi-word Term Recognition.” Journal of Natural Language Processing 8(1):101–125. ), YATE (Vivaldi, 2001), MetaMap (Aronson, and Lang 2010Aronson, Alan R. and François-Michel Lang 2010 “An Overview of MetaMap: Historical Perspective and Recent Advances.” Journal of American Medical Informatics Association 17(3):229–236. ) or Meijer et al. (2014)Meijer, Kevin, Flavius Frasincar, and Frederik Hogenboom 2014 “A Semantic Approach for Extracting Domain Taxonomies from Text.” Decision Support Systems 62:78–93. . In the recent years, a greater tendency has been shown towards the implementation of machine learning techniques on term/phrase extraction, the work by Arora et al. (2016)Arora, Chetan, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer 2016 “Automated Extraction and Clustering of Requirements Glossary Terms[J].” IEEE Transactions on Software Engineering 43(10):918–945. or Shang et al. (2018)Shang, Jingbo, Jialu Liu, Meng Jiang, Xiang Ren, Clare R. Voss, and Jiawei Han 2018 “Automated Phrase Mining from Massive Text Corpora.” IEEE Transactions on Knowledge and Data Engineering 30(10):1825–1837. illustrate this trend.
However, the literature on the evaluation of these methods is not so abundant. There are initiatives for the evaluation of ATR methods like the one organized by the Quaero program (Mondary et al. 2012Mondary, Thibault, Adeline Nazarenko, Haïfa Zargayouna, and Sabine Barreaux 2012 “The Quaero Evaluation Initiative on Term Extraction.” In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC’12), edited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk and Stelios Piperidis, 663–669. European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/index.html), which aims at studying the influence of corpus size and type on the results obtained by these methods as well as the way different versions of the same ATR methods have evolved. Some authors also show their concern about the lack of a standard for ATR evaluation which is often carried out manually or employing a list of terms, a gold standard, which is not systematically described (Bernier-Colborne 2012Bernier-Colborne, Gabriel 2012 “Defining a Gold Standard for the Evaluation of Term Extractors.” In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), edited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk and Stelios Piperidis, 15–18. European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/index.html, 1). For instance, some researchers like Sauron, Vivaldi and Rodríguez, or Nazarenko and Zargayouna (in Bernier-Colborne 2012Bernier-Colborne, Gabriel 2012 “Defining a Gold Standard for the Evaluation of Term Extractors.” In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), edited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk and Stelios Piperidis, 15–18. European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/index.html), who have worked on this area although there is still much to be done in this respect. Along these lines, Heylen and De Hertog (2015)Heylen, Kris and Dirk De Hertog 2015 “Automatic Term Extraction.” In Handbook of Terminology, edited by Hendrik Kockaert and Frieda Steurs, 203–221. Amsterdam: John Benjamins. reflect upon automatic term extraction from specialized corpora by focusing on the subtasks implied in such processes such as corpus compilation or the concepts of unithood or termhood, amongst other. Finally, the research work by Astrakhantsev (2018)Astrakhantsev, Nikita 2018 “ATR4S: Toolkit with State-of-the-art Automatic Terms Recognition Methods in Scala.” Language Resources and Evaluation 52:853–872. could be regarded as a hybrid between the proposal of a novel state-of-the-art ATR method, ATR4S (based on the assessment of 13 different ATR methods), which evaluates the degree of precision achieved by each of these methods and their processing time.
The number of studies concerned with the implementation and validation of ATR methods within the legal field is scarcer as opposed to other specialized areas such as biology, anatomy or engineering, to name but a few. The peculiar statistical behaviour of legal terminology might justify this fact. The degree of integration of certain legal terms within the general lexicon can easily be observed. As proved in Marín (2016) 2016 “Measuring the Degree of Specialisation of Sub-Technical Legal Terms through Corpus Comparison: a Domain-Independent Method.” Terminology 22(1):80–102. , 45.41% of the terms identified in a legal corpus also displayed high frequency values in the list of the 3,000 most frequent words of the British National Corpus, a general language text collection. Such statistical behaviour is labelled as semitechnical by authors like Coxhead (2000)Coxhead, Averil 2000 “A New Academic Word List.” TESOL Quarterly 34(2):213–238. . Consequently, the automatic extraction of legal terms, which is commonly achieved through corpus comparison, might become unwieldly as opposed to other language areas, where terms are almost exclusively used in specialized texts.
3.Methodology
As stated above, the work by Marín (2014)Marín, María José 2014 “Evaluation of Five Single-Word Term Recognition Methods on a Legal Corpus.” Corpora 9(1):83–107. demonstrates the effectiveness of four ATR methods focused on single-word legal term retrieval as implemented on a corpus of judicial decisions. Some of these methods, which will also be assessed in the present research, performed quite efficiently, finding that Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. appeared to be the most effective one in automatically identifying legal terms. It reached 73.2% average precision for the top 2,000 CTs.
Regarding the selection of the methods described herein, it was made on the basis of their efficiency as evidenced in Marín (2014)Marín, María José 2014 “Evaluation of Five Single-Word Term Recognition Methods on a Legal Corpus.” Corpora 9(1):83–107. and as demonstrated by the authors themselves. In addition, it was also conceived as a procedure to establish a comparison between automatized v. non-automatized methods. As justified below, the first two ATR methods, Scott’s (2008) and Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. are fully automatic whereas Chung’s (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. requires the manual application of the algorithm proposed. The results would serve not only as a way to suggest an efficient method in legal term extraction but also to illustrate the advantages and disadvantages of having to implement one of these methods in a manual way.
In this respect, the term precision could be defined as the degree of accuracy in automatic term retrieval, which can be measured both automatically and manually. For the automatic calculation of precision there needs to exist an electronic glossary of terms used as the gold standard which CT lists are compared against. Finding a reliable electronic legal glossary to be used as reference in more than one language is not always an attainable task, and manual validation becomes the method implemented to confirm CTs as true terms (TTs). This is the case of the research at issue, where two specialists, one of them a corpus linguist and terminologist, the other one a legal language instructor specialized in corpus linguistics, acted as referees by manually supervising the CT lists and confirming whether the terms extracted could be ratified as TTs.
One of the limitations of manual supervision is the smaller size of the CT inventories, which were limited to 500 in each language for the present study due to practical reasons.
In order to compensate for the degree of subjectivity implied in the manual validation of the TTs found amongst the 3,000 CTs obtained in English and Spanish (2 lists of 500 items per language and method), an inter-rater reliability test was employed whereby the referees had to classify the terms found in the inventories into four main categories, namely, highly specialized terms (occurring in the legal context almost exclusively), semitechnical terms (those shared by the general and specialized fields), undefined (it was not clear whether an item was a term or a general word) and non-terms. Only those items falling within the first two categories were considered as TTs so as to determine the average precision attained by each ATR method. If any of the items included the last two categories (undefined or non-terms) by any of the referees was identified as a member of the first two (technical or semitechnical terms) by the other one, it was also discarded. Nevertheless, before doing so, they were given the chance to discuss and come to an agreement, whenever possible, on some of the items which there was no initial consensus about.
3.1Method description
3.1.1Keywords
Scott’s (2008a)Scott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software. application, Keywords (included in the software package WordSmith), could not be deemed an ATR method in itself, at least it is not presented as such by the authors. Nonetheless, given the results examined below and as evidenced in Marín (2014)Marín, María José 2014 “Evaluation of Five Single-Word Term Recognition Methods on a Legal Corpus.” Corpora 9(1):83–107. , its degree of efficiency in legal term mining is noticeably higher than other ATR methods specifically designed to that end. However, it is not included exclusively in Scott’s software package, other authors like Anthony (2020)Anthony, Laurence 2020 AntConc (Version 3.5.9) [Computer Software]. Tokyo: Waseda University. https://www.laurenceanthony.net/software or Kilgarriff et al. (2014)Kilgarriff, Adam, Vít Baisa, Jan Bušta, Miloš Jakubíček, Vojtěch Kovář, Jan Michelfeit, Pavel Rychlý, and Vít Suchomel 2014 “The Sketch Engine: Ten Years On.” Lexicography 1:7–36. also offer the possibility of implementing it automatically employing different parameters to measure the statistical significance of a term in a specialized corpus.
In this case, Scott’s version (2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) was singled out owing to its user-friendly character. Being part of a software package, this tool facilitates greatly the automatic comparison and processing of two large corpora through the implementation of different statistical measures that the user configures.
The automatization of the extraction process saves a considerable amount of time and effort, not requiring advanced mathematical knowledge for the manual implementation of the algorithms underlying these methods, for instance, Dunning’s (1993)Dunning, Ted E. 1993 “Accurate Methods for the Statistics of Surprise and Coincidence.” Computational Linguistics 19(1):61–74. log-likelihood. Scott’s software retrieves terms automatically through the identification of those lexical items in a specialized corpus which are “unusually frequent (or unusually infrequent) in comparison with what one would expect on the basis of the larger word-lists” (Scott 2008b 2008b WordSmith Tools Help. Stroud: Lexical Analysis Software., 184), which might signal, in Biber’s words, a word’s “importance as a content descriptor” (in Gabrielatos 2011, 5).
For the present analysis, Dunning’s log-likelihood (1993Dunning, Ted E. 1993 “Accurate Methods for the Statistics of Surprise and Coincidence.” Computational Linguistics 19(1):61–74.) was implemented for automatic keyword extraction. As already stated, the identification of the keywords in both legal corpora (which will be described in greater detail in Section 3.4) was achieved by comparing them against two sets of general language texts. The reference corpus in English was a section of LACELL, a 14.8-million-word collection of general English texts which excluded those not coming from British sources. The entire corpus was compiled by the LACELL (Lingüística Aplicada Computacional, Enseñanza de Lenguas y Lexicografía) 11.For more information on the LACELL research group see: https://curie.um.es/curie/catalogo-ficha.du?seof_codigo=1&perf_codigo=4&cods=E020*02 research group at the University of Murcia. It is a 21 million-word (118,105 KB) balanced and synchronic corpus which includes both written texts from diverse sources such as newspapers, books (academic, fiction, etc.), magazines, brochures, letters and so forth, and also oral language samples from conversation at different social levels and registers, debates and group discussions, TV and radio recordings, phone conversations, everyday life situations, classroom talk, etc. Its geographical scope ranges from USA, to Canada, UK and Ireland, however, those texts not coming from the United Kingdom were removed to avoid skewedness in the results as well as the transcriptions of the oral samples, given the nature of the study corpus, solely made up of written texts.
As regards its Spanish counterpart, it was extracted from a larger collection of Wikipedia articles compiled by Reese et al. (2010)Reese, Samuel, Gemma Boleda, Montse Cuadros, Lluís Padró, and German Rigau 2010 “Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus.” In Proceedings of 7th Language Resources and Evaluation Conference (LREC’10), edited by Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner & Daniel Tapias, 1418–1421. European Language Resources Association (ELRA). in Spanish. The Spanish sample used in the present study comprises 94 texts which roughly reach the 100-million-word target. The range of topics covered by the Spanish reference corpus is wide, touching upon areas such as history, science, medicine or literature as well as other general language areas other than the legal one. This corpus was downloaded from the authors’ website,22.Available at: https://www.cs.upc.edu/~nlp/wikicorpus/ which allows users to obtain the texts easily and store them in raw text format for later processing at no cost. The format of these texts does not coincide with the length of the original Wikipedia articles, as each of the sections of the original corpus resulted from merging together different sets of the articles, hence the length of the texts. The texts were rearranged and the word target reduced to facilitate the processing stage, as the software could not cope with the entire corpus as downloaded from the authors’ website.
3.1.2TermoStat
As well as Keywords, TermoStat33.Available at: http://termostat.ling.umontreal.ca/index.php?lang=fr_CA (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) is a user-friendly online tool which manages to extract the specialized terms in a corpus in several languages like French, English, Spanish, Italian or Portuguese. Drouin’s technique could be regarded as a hybrid one as it relies both on grammatical and statistical information for term identification, using corpus comparison to that end.
The output term lists are ranked according to their level of specificity, in conjunction with their classification into morphological categories (nouns, verbs, adjectives and adverbs). The system computes lemma frequency (the frequency of the root word including all of its possible realizations) instead of type frequency. The lemmatization of the corpus is implemented with Schmidt’s Tree Tagger (1999Schmid, Helmut 1999 “Improvements in Part-of-Speech Tagging with an Application to German.” In Natural Language Processing Using Very Large Corpora, edited by Susan Armstrong, Kenneth Church, Pierre Isabelle, Sandra Manzi, Evelyne Tzoukermann, and David Yarowsky, 13–25. Springer. ), which also allows for the POS (part of speech) tagging of the corpus texts. The software offers the possibility of retrieving multi-word terms although its degree of accuracy decreases if compared with single-word term identification. Figure 1 displays the results obtained online after processing the legal corpus at hand with TermoStat, where the lemma of the selected terms, their frequency, specificity coefficient, variants and POS (part of speech) tag are shown.
Drouin’s software does not require the upload of a reference corpus to the online database, as it contains its own general reference corpora in various languages to perform the comparison with the specialized text collection uploaded by the users and the subsequent recognition of specialized terms.
As already stated, Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. technique relies on corpus comparison by focusing on the statistical behaviour displayed by the CTs in the specialized context as opposed to the general one. In Drouin’s own terms:
This technique, which relies on standard normal distribution, gives us access to two criteria to quantify the specificity of the items in the set: (1) the test-value, which is a standardized view of the frequency of the lexical units, and (2) the probability of observing an item with a frequency equal to or higher than the one observed in the AC. Because the probability values decline rapidly, we decided to use the test-value since it permits much more granularity in the results.(Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. , 101)
In order to determine the degree of precision of the software in the identification of specialized terms within the field of telecommunications, Drouin resorts to specialized referees, who manually evaluate the validity of the CT lists provided, insisting on the subjective character of such validation methods. Automatic validation complements the evaluation process by comparison with a telecommunications terminological database, which yields 86% precision in single-word term retrieval.
As a final point, Drouin puts great emphasis on the need to explore the context of usage of those terms which activate a specialized meaning when in contact with the technical environment, the so-called semitechnical terms, often prone to displaying a peculiar statistical behaviour and to trick automatic systems solely based on corpus comparison.
3.1.3Chung
Similarly to Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) and TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ), Chung’s (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. ATR method implements the corpus comparison technique based on the observation of term frequency both in the general and the specialized areas. The author sets a ratio threshold to tell apart terms from non-terms, using the value > 50 as the cut-off point for a specialized term to be reckoned as such. As the validation method required manual supervision on the part of the referees, a cut-off point was established for the top 500 CTs once the list of CTs was filtered.44.See p. 18 on filtering the CTs obtained with Chung’s method. The frequency ratio for the top 500 CTs ranged from 3652.24 to 87.33 in Spanish and from 4461.11 to 181.45 in English.
Chung’s method is not part of a software package or an application, yet, its calculation is quite straightforward. It solely requires obtaining two frequency lists by processing a specialized corpus and a general language one with any software application like WordSmith (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) or AntConc (Anthony 2020Anthony, Laurence 2020 AntConc (Version 3.5.9) [Computer Software]. Tokyo: Waseda University. https://www.laurenceanthony.net/software). Then, the frequency scores are normalized by dividing a word’s raw frequency by the number of tokens or running words in the corpus,55.In this case, the result was multiplied by 10,000 to make the figures more manageable and avoid an excessive number of zeros and decimals. this normalization procedure allows for the comparison between two datasets of different size. Once we calculate the normalized frequency of the items in both word lists, the ratio of occurrence of every word in the lists is determined. A word’s ratio of occurrence can be obtained by dividing its normalized frequency in the specialized corpus by the same parameter in the general one. Those words standing above the > 50 ratio threshold would be regarded as specialized terms, given their higher frequency values in the technical corpus.
As well as Drouin, Chung assesses the efficiency of her method through automatic and manual validation. She asks two referees, who were experts in the field of anatomy, to classify the terms in a sample text taken from her anatomy corpus into four categories depending on their level of specialization. She classifies all the words in the corpus after calculating their ratio of occurrence and also produces four groups based on the results. After comparing the specialists lists with her own, she finds 86% overlap between the most specialized group of terms found by the referees and the ones included in her lists, automatically determined on the basis of their ratio of occurrence.
3.2Corpus description
Terminological extraction commonly requires comparing a specialized corpus against a general one. A vast majority of ATR methods resort to corpus comparison as a pivotal procedure for automatic term extraction, as already pinpointed in the literature review section. This is why the four corpora included in Table 1 were necessary for the present research so as to facilitate term retrieval in both languages.
Corpus/language | # Tokens | # Types | # Texts |
---|---|---|---|
Legal English corpus | 2,396,985 (2.4m) | 20,236 | 600 |
Legal Spanish corpus | 3,723,587 (3.7m) | 25,268 | 600 |
LACELL (general Spanish corpus) | 14,830,302 | 264,609 | 8 |
Wikicorpus (Reese et al., 2010Reese, Samuel, Gemma Boleda, Montse Cuadros, Lluís Padró, and German Rigau 2010 “Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus.” In Proceedings of 7th Language Resources and Evaluation Conference (LREC’10), edited by Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner & Daniel Tapias, 1418–1421. European Language Resources Association (ELRA).) | 101,322,383 | 732,795 | 94 |
Table 1 comprises the four corpora used in this study, two of which are made up of 600 legal texts each, all of them judicial decisions issued by Spanish and British courts between 2016 and 2017. Since they differ in size, there was a need to normalize frequency scores for comparison.66.See Section 3.1.3. for details on normalisation. The British text collection comprises roughly 3.7 million words while its Spanish counterpart has 2.4 million tokens (or running words). The texts in these two corpora were obtained from two major databases: the CENDOJ 77. http://www.poderjudicial.es/search/indexAN.jsp (the Spanish legal documentation centre) and the BAILII88. http://www.bailii.org/ (the British and Irish Legal Information Institute). Both text collections were compiled so as to be used in different contexts such as corpus-based discourse analysis on migration99.For the compilation of both legal corpora, the query terms related to the topic of migration. as well as for the validation of ATR methods in the legal field, which is the objective of the present study. For the texts to be equivalent in generic terms, in spite of their intrinsic differences, the search configuration was set for the engine on the BAILII website to only retrieve British judgments within the case law section, as it offers access to a plethora of different legal texts in English from various sources. In a similar fashion, the Spanish search engine was configured to extract solely those texts under the category sentencias, without excluding any court or tribunal regardless of its position within the judicial hierarchy.
The general corpora acting as reference in this research, LACELL and the Wikicorpus were not required for the implementation of Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ATR method, as the software already includes general corpora in different languages to implement the comparison between the general and the specialized fields, which facilitates the task greatly.
Concerning the English reference corpus, LACELL, it is composed of 14.8 million tokens and 264,609 types, that is, every different wordform in a corpus regardless of the number of times it occurs in it. The section of the corpus employed herein excludes those texts not coming from British sources. On the other hand, the Wikicorpus (Reese et al., 2010Reese, Samuel, Gemma Boleda, Montse Cuadros, Lluís Padró, and German Rigau 2010 “Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus.” In Proceedings of 7th Language Resources and Evaluation Conference (LREC’10), edited by Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner & Daniel Tapias, 1418–1421. European Language Resources Association (ELRA).) is made up of roughly 101 million words obtained from Wikipedia articles on many different topics such as history, science or literature, amongst many others, as stated above.
3.3Method implementation
The degree of complexity involved in the implementation of the three methods selected for validation varies greatly depending on their degree of automatization. Given that both Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) and TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) are integrated into software applications, it was relatively easy to process both legal corpora as well as the reference ones.
In the first place, LACELL and the legal English corpus were analysed with WordSmith (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) to obtain the frequency lists necessary for the software to extract the legal keywords. A similar process was followed to obtain the Spanish set. Then, the system was configured to implement the log-likelihood test (Dunning 1993Dunning, Ted E. 1993 “Accurate Methods for the Statistics of Surprise and Coincidence.” Computational Linguistics 19(1):61–74.), which delves into the frequency lists extracted from general and specialized corpora by comparing the frequency scores of the terms in both contexts as well as other statistical data such as distribution. Rayson and Garside (2000)Rayson, Paul, and Roger Garside 2000 “Comparing Corpora Using Frequency Profiling.” In WCC ’00: Proceedings of the Workshop on Comparing Corpora, Vol. 9, 1–6. provide a clear description of how keyness is calculated by implementing Dunning’s log-likelihood test.1010.For more details on the calculation method see: https://ucrel.lancs.ac.uk/people/paul/publications/rg_acl2000.pdf and https://ucrel.lancs.ac.uk/llwizard.html (UCREL’s log-likelihood site)
A frequency threshold of > 3 was established for the system to identify the keywords in both languages with the purpose of discarding those lexical items occurring rarely whose significance would be almost null. In fact, 32.76% of the words in the legal Spanish corpus and 35.77% in the English set were hapax legomena, that is, lexical items which can only be found once in a corpus. The amount of dis legomena, those terms occurring solely twice, was not so high although 13.27% were identified in the Spanish text collection as opposed to 15.35% in the British corpus. The system produced a set of 4,550 positive keywords in English and 4,028 in Spanish out of which the top 500 were singled out for manual validation.
Table 2 displays the top 20 English keywords obtained prior to the validation process. This sample, in spite of its limited size, illustrates how the terms which are pushed towards the top of the term inventory based on their statistical behaviour, when contrasted with the general corpus, inform on the generic features of the texts themselves. Let us remind the readers about the major features of the legal corpora at hand, which solely comprise judicial decisions, where terms like decision (K 1111.K = Keyness score = 32,991) itself, appeal (K = 29,484), tribunal (K = 25,938) or court (K = 24,042) are extremely common. The list of keywords also informs about the actors in judicial proceedings, finding terms like appellant (K = 24,113), judge (K = 20,659) or claimant (K = 15,010) at the top of the term inventory. It can also be observed that, in spite of their lack of terminological value, some function words (that, the) entered the top 20 term list, unlike the other three ATR methods tested. However, except for the term immigration (K = 25,938), unlike Drouin’s and Chung’s methods, the rest of the keywords below do not throw any light on the major topics the corpus might be articulated around, these elements tend to be pushed to lower positions in the list based on their keyness value.
N | Key word | Freq leg corpus | Keyness | P |
---|---|---|---|---|
1 | decision | 13879 | 32991.5547 | 3.1321E-23 |
2 | appeal | 11214 | 29484.0508 | 4.6024E-23 |
3 | immigration | 8512 | 25938.0547 | 5.714E-23 |
4 | tribunal | 7824 | 24135.7734 | 5.7154E-23 |
5 | appellant | 7574 | 24133.7871 | 5.7807E-23 |
6 | court | 11428 | 24042.8301 | 6.3717E-23 |
7 | that | 81725 | 23276.2383 | 6.6486E-23 |
8 | the | 305801 | 21986.9082 | 9.118E-23 |
9 | judge | 7860 | 20659.1582 | 9.2531E-23 |
10 | article | 7966 | 20558.25 | 1.3641E-22 |
11 | case | 11742 | 18067.6367 | 1.4952E-22 |
12 | evidence | 8861 | 17524.1777 | 1.8831E-22 |
13 | paragraph | 6111 | 16229.8799 | 1.9861E-22 |
14 | application | 7144 | 15945.0762 | 2.3816E-22 |
15 | claimant | 4930 | 15010.2969 | 2.5946E-22 |
16 | state | 9264 | 14588.8438 | 3.5848E-22 |
17 | Mr | 10959 | 13102.0137 | 3.8158E-22 |
18 | respondent | 4015 | 12832.7441 | 3.846E-22 |
19 | V | 6244 | 12799.2266 | 3.9256E-22 |
20 | secretary | 6258 | 12712.3477 | 4.1035E-22 |
Secondly, Drouin’s online software, TermoStat (2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ), was tested. It facilitates the processing task greatly. Drouin’s software is lodged online and only requires the user to register and to upload the corpus to the server, being capable of processing single text files in raw text format (up to 30 Mb) relatively quickly. After analysing both texts collections, two lists of legal terms were obtained in Spanish (4,519 CTs) and English (2,233 CTs). The validation procedure was similar to that applied to Scott’s (2008a)Scott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software. software, whereby the top 500 CTs were selected.
In this case, the set of Spanish terms was taken as sample of the top 20 CTs produced by the software before it was actually validated. As presented below, in Table 3, although the list of terms contains some items which point at the generic character of the texts in the corpus (similarly to Table 2) like sentencia (sentence, S 1212.S = Specificity score = 347.41), recurso (appeal, S = 208.87), apelación (appeal, S = 202.07), juzgado (court, S = 148.34) or tribunal (court/tribunal, S = 141.22), it also points in other directions, since other terms are pushed to the top of the list which relate to procedural legal lexicon, for instance, multar (to fine, S = 205.56) or sanción (penalty, S = 200.09). Nevertheless, unlike the previous method, TermoStat reveals some lexical items which are fundamental for the analysis of the texts in the corpus, which, as stated above, revolve around the topic of immigration. Words like expulsión (deportation, S = 296.24), territorio (territory, S = 145.85), permanencia (permanence, S = 142.08) or retorno (return, S = 139.34) are highly representative of the legal trouble migrants might go through when they are subject to legal proceedings in a foreign country. The statistical significance assigned to such terms might also be indicative of their thematic relevance within this text collection.
Together with the statistical data associated to each term (columns 2 and 3), which are lemmatized, that is, their frequency is computed with regard to the root word (shown in the first column), we are offered the frequency score, in column 4, as well as its POS tag (fifth column).
Candidate (Grouping variant) | Frequency | Specificity | Variants | Pattern |
---|---|---|---|---|
sentencia | 12505 | 347.41 | sentencia___sentencias | Commo Noun |
expulsión | 8634 | 296.24 | expulsión___expulsiones | Common_Noun |
recurso | 9906 | 208.87 | recurso___recursos | Common_Noun |
multar | 4274 | 205.56 | multar___multas | Verb |
apelación | 4110 | 202.07 | apelación___apelaciones | Common_Noun |
sanción | 5937 | 200.09 | sanción___sanciones | Common_Noun |
artículo | 9796 | 189.55 | artículo___artÌculos | Common_Noun |
recurrente | 3335 | 185.82 | recurrente___recurrentes | Adjective |
art | 3193 | 184.68 | art | Commo Noun |
jurisprudencia | 3088 | 168.87 | jurisprudencia | CommonNoun |
irregular | 2789 | 167.38 | irregular___irregulares | Adjective |
apartado | 5193 | 155.49 | apartado___apartados | CommonNoun |
contencioso | 2226 | 150.16 | contencioso | Adjective |
auto | 2220 | 149.83 | auto___autos | CommonNoun |
juzgado | 2052 | 148.34 | juzgado | CommonNoun |
territorio | 4442 | 145.85 | territorio___territorios | CommonNoun |
administrativo | 3931 | 144.4 | administrativo___administrativos___administrativas | Adjective |
permanencia | 2011 | 142.08 | permanencia | CommonNoun |
tribunal | 4799 | 141.22 | tribunal___tribunales | CommonNoun |
retorno | 2224 | 139.34 | retorno | CommonNoun |
Finally, Chung’s ATR method required more steps until both frequency lists (the specialized and the general one) were ready to be processed and the ratio of occurrence could be calculated. Chung’s method relies on frequency as the sole parameter for term identification and two wordlists are needed to calculate it. They must be obtained using software like Scott’s (2008a)Scott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software. or Anthony’s (2020)Anthony, Laurence 2020 AntConc (Version 3.5.9) [Computer Software]. Tokyo: Waseda University. https://www.laurenceanthony.net/software and then, a comparison must be established. This is done by dividing the normalized frequency of each term in the legal corpus by the same parameter in the general one. By applying the appropriate formulas, the calculation process can become semi-automatic if an excel spreadsheet is used.
Once the CT list was arranged according to the ratio value, misspelled words had to be removed in the first place. Chung’s method requires the manual filtering of these elements as they do not occur in the general corpus and would be automatically classified as terms, although their value for terminological analysis is void. As a matter of fact, the group of terms not found in the reference corpus might comprise not only misspelled words but also proper names, whose statistical relevance in judicial decisions is considerable, as Marín (2014)Marín, María José 2014 “Evaluation of Five Single-Word Term Recognition Methods on a Legal Corpus.” Corpora 9(1):83–107. acknowledges, but their thematic content is null.
Having also removed hapax and dis legomena, and having applied the > 3 frequency threshold, two lists of 12,393 Spanish and 16,260 English CTs were ranked according to their ratio value. Following a similar validation procedure to the one applied to Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) and TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ), the top 500 CTs both in Spanish and English were selected. The major thematic category which the top 20 CTs belong in (see in Table 4), as ranked by Chung’s ratio method and similarly to Keywords, evidences the corpus texts genre, judicial decisions. In Table 4 we find words such as respondent (FR 1313.FR = Frequency Ratio = 4461), appellants (FR = 4356), petitioner (FR = 1272), or tribunal (FR = 704), as well as acronyms like CPR (Civil Procedure Rules, FR = 577), FCO (Foreign and Commonwealth Office, FR = 640) or UT (Upper Tribunal, FR = 583), which point in a similar direction.
On the other hand, the acronyms IA (Immigration Act) or UNHCR (United Nations High Commissioner for Refugees) as well as the term deportation (FR = 955) are indicative of the major topic that the corpus texts are based on, that is, immigration. Along these lines, the verb erred (FR = 677) or the noun proportionality (FR = 555), which might potentially convey attitudinal meanings, could also be of interest in connection to the study of the legal circumstances that surround migration processes.
Term | Freq leg corpus | Normed freq leg corpus | Freq leg corpus | Normed freq leg corpus | Chung’s ratio |
---|---|---|---|---|---|
respondent | 4015 | 10.9462 | 9 | 0.0025 | 4461.1111 |
appellants | 1307 | 3.5633 | 3 | 0.0008 | 4356.6667 |
IA | 1170 | 3.1898 | 3 | 0.0008 | 3900.0000 |
appellant | 7574 | 20.6492 | 24 | 0.0065 | 3155.8333 |
EU | 1272 | 3.4679 | 7 | 0.0019 | 1817.1429 |
petitioner | 636 | 1.7339 | 5 | 0.0014 | 1272.0000 |
appellant’s | 311 | 0.8479 | 3 | 0.0008 | 1036.6667 |
deportation | 2483 | 6.7695 | 26 | 0.0071 | 955.0000 |
tribunal | 7824 | 21.3308 | 111 | 0.0303 | 704.8649 |
UNHCR | 412 | 1.1232 | 6 | 0.0016 | 686.6667 |
erred | 474 | 1.2923 | 7 | 0.0019 | 677.1429 |
submits | 798 | 2.1756 | 12 | 0.0033 | 665.0000 |
FCO | 192 | 0.5235 | 3 | 0.0008 | 640.0000 |
UT | 467 | 1.2732 | 8 | 0.0022 | 583.7500 |
CPR | 231 | 0.6298 | 4 | 0.0011 | 577.5000 |
proportionality | 777 | 2.1184 | 14 | 0.0038 | 555.0000 |
subsection | 441 | 1.2023 | 8 | 0.0022 | 551.2500 |
paras | 385 | 1.0496 | 7 | 0.0019 | 550.0000 |
Sudanese | 220 | 0.5998 | 4 | 0.0011 | 550.0000 |
WLR | 474 | 1.2923 | 9 | 0.0025 | 526.6667 |
4.Results and discussion
4.1Method validation
The implementation procedure followed to identify the legal terms in the Spanish and English corpora led to obtaining two CT inventories per method. The lists were ranked according to the parameters set by each author. Nevertheless, adopting a quantitative perspective, it became necessary to determine the degree of efficiency achieved by each method in order to decide which of them was the most precise in recognizing terms automatically. To that end, as stated above, two specialists were requested to manually supervise the top 500 CTs in each of the six term lists extracted. After classifying the terms in the categories described above and merging together those which both specialists deemed either highly specialized or semi-technical, average precision was calculated for each method by finding the percentage of TTs extracted out of the 500 CTs selected, as shown in Figure 2, for the English corpus and in Figure 3 for the Spanish one.
Figure 2 illustrates the differences found among the three methods assessed in this study when applied to an English legal corpus, finding that Drouin’s software, the most precise ATR method, managed to identify 58.2% TTs on average. Although its degree of precision might seem slightly low, particularly if compared with the figures provided by the authors themselves, it must be emphasized that the process of validation was not automatic. It was performed through the implementation of an inter-rater reliability test which implied discarding some items from the lists when there was no consensus between the referees. This lack of agreement was often caused by semitechnical terms, whose significant presence both in the general and the specialized context made the referees doubt and often invalidate the inclusion of words in the lists like razonamiento (reasoning), causa (cause), judge or trial,1414.Terms like these were left out of the validated lists applying quantitative and also qualitative criteria. In fact, they are very common and frequent in the general context, yet, they were not perceived strictly as legal terms by the referees. thus diminishing the proportion of TTs confirmed as such.
Nevertheless, the fact that a CT was excluded from the final list of terms after filtering does not imply that it may not be of interest for the researcher willing to examine the major topoi or themes in the corpus. It simply points at a lack of specificity of a considerable number of terms, whose presence and statistical relevance in the general field, something which is probably one of the most distinctive lexical features of legal terms, prevents them from being automatically deemed specific. Similarly, Keywords, which stands in second position, managed to extract 51.4% TTs on average successfully, in spite of it not being conceived as an ATR method proper. Yet, the function it performs by retrieving the most statistically significant lexical items in a specialized corpus is very similar to those which were designed specifically to that end.
The third position is occupied by Chung’s method which, after manually filtering typos and other meaningless units such as proper names, reaches 47.4% average precision. If the discarded elements had been included in the validation lists, the degree of efficiency of this method would have probably dropped dramatically, since a great proportion of such items are not terms or have no terminological value.
The results obtained after validating the CT lists in Spanish, as displayed by Figure 3, are slightly higher than the ones described above. In fact, the most precise method, TermoStat, identifies 66.8% TTs within the Spanish corpus, while it only retrieves 58.2% from its English counterpart. Although this is mere conjecture, the higher degree of success of this and the other two methods in Spanish might be indicative of the statistical behaviour of Spanish legal terms, which must necessarily differ on average from their English equivalents as regards their frequency and distribution in the general and specialized contexts. However, to confirm this perception, it would be necessary to delve much deeper into the algorithm designed by Drouin and the term retrieval process itself, which does not fall within the scope of this study.
Along these lines, Keywords also performs more efficiently in Spanish, standing 5 points above the results obtained in English, achieving 56.6% precision and ranking second. Similarly, Chung’s method appears to be more precise in automatic term retrieval when implemented on the Spanish corpus, although the difference is marginal, just 1.20 points higher (47.4%) than in English. Even so, it is the least efficient method in both languages, and also, the most complex to implement, let alone the noise levels generated by the automatic inclusion of elements not found in the reference corpus, which required manual filtering prior to its validation.
In order to reinforce the results shown above, which consisted in calculating precision by means of human validation, recall was also assessed automatically. The automatization of the process was accomplished by comparison with a golden standard, that is, an electronic glossary of legal terms in English stored in an Excel spreadsheet, consisting of a list of 8,715 items taken from different legal term glossaries in raw text format (as defined in Marín 2014Marín, María José 2014 “Evaluation of Five Single-Word Term Recognition Methods on a Legal Corpus.” Corpora 9(1):83–107. ). The term recall refers to the amount of TTs extracted by an ATR method with respect to the entire list of CTs identified in the corpus, not to a single set such as the top 500 CTs displayed above. This parameter could only be measured within the English corpus, as there was no Spanish gold standard to be used as reference.
As illustrated by Figure 4, it is Drouin’s technique (2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) which reaches not only the highest precision levels, but also ranks first as regards recall, since it manages to identify 35.3% TTs out of the entire list of items extracted (2,233). It is closely followed by Keywords, which obtains 29.2% for this parameter, while Chung’s method performs poorly, only managing to recognize 12.5% terms in English.
All in all, taking into consideration, not only its user-friendliness as a tool (Scott’s software requires greater expertise as many parameters must be adjusted and the options and applications within it are greater), but also the fact that it does not require the use of a reference corpus or wordlist to be uploaded to the system, it is Drouin’s method which stands out as the most effective one for legal term extraction out of the three techniques assessed in this study both in Spanish, where it appears to be more efficient, and in English. The results reflected on Figure 4 above reinforce this perception, as TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) appears to excel the other two methods not only in terms of precision but also regarding recall when implemented on the English corpus.
4.2Thematic term categories
4.2.1Corpus-driven semantic classification
In spite of the fact that ATR methods are designed to identify those lexical elements whose statistical salience in specialized contexts make them stand out when put against the general field, they are also useful tools to detect major thematic areas and unveil topics that may otherwise remain unnoticed, particularly when dealing with large text collections. In doing so, they allow for an in-depth examination of the context of usage of those terms automatically identified by the ATR methods selected so, depending on the research objectives established, it might be interesting to select a specific technique not only based on its efficiency in identifying TTs, but also on its capacity to provide a wider picture of the themes or topics a corpus might revolve around, other than solely focusing on specialized terms pertaining to the legal area, as is the case.
In order to determine which of the methods assessed in the present research was capable of signaling a wider range of themes or topics, the top 500 CTs extracted by each method in English and Spanish were examined and classified into five major semantic categories. These thematic categories were defined following a corpus-driven approach, that is, they were identified on the basis of the observation of the items contained in the lists themselves, finding that the largest proportion of such items belonged in the category general legal terms, as shown in Table 5. The rest of the themes identified amongst the top terms in each output list were territory, evaluative items, family and crime/punishment. From a qualitative perspective, the study of the last four groups might complement the legal term inventory as they point at relevant topics in both corpora other than legal terms stricto sensu. Let us remind the reader that the measure which was employed to identify and rank the terms indicates their statistical saliency in comparison with a general language corpus, hence the greater presence of these items amongst the top terms.
Those elements comprised within the theme territory are closely linked to the major topic that the texts revolve around, immigration, finding words such as asylum, deportation, nacionalidad (nationality) or extranjero (foreigner) amongst its constituents in both languages. Secondly, the group evaluative items embraces those terms which could potentially express the speaker’s attitude towards the propositional content of the texts, including words like vulnerable, degrading or inhuman in English and grave (serious) or indefensión (helplessness) in Spanish. In the third place, the concept family gathers words which point at familiar issues or concerns that relate to immigration. This is the case of words like marriage, spouse, matrimonio (marriage) or tutela (guardianship). The last category, crime, comprises those items which either explicitly refer to crime itself, for instance, trafficking, torture, offence, trata (human trafficking) or infracción (breach) or rather signal the consequences of committing a crime: detain, imprisonment, multar (fine) or sanción (penalty).
English Corpus | TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) | ||||
Legal terms | Territory | Evaluative items | Family | Crime | |
73.6% appellant decision administrative appellate cross-examination mandatory affidavit |
9.24% asylum-seeker returnee entrant extradition resident migrant return immigrant refugee domestic |
10.95% vulnerable manifestly reasonableness degrading inhuman unfounded unfairness irrational inconsistency |
1.02% marriage father spouse |
4.79% criminal trafficker offender offend breach criminal detainee torture trafficking offence |
|
Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) | |||||
Legal terms | Territory | Evaluative items | Family | Crime | |
82.1% decision appeal tribunal appellant court judge article case |
7.39% immigration asylum deportation residence jurisdiction refugee nationality entry |
4.66% error proportionality reasonable erred arguable credibility disproportionate proportionate |
0.38% spouse |
5.44% detention detained trafficking criminal persecution imprisonment offence torture |
|
Chung (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. | |||||
Legal terms | Territory | Evaluative items | Family | Crime | |
72.52% respondent appellants petitioner tribunal UNHCR submits UT cpr |
13.06% deportation immigration asylum deport deporting reside relocation EU stateless |
9.9% proportionate insurmountable disproportionate mistreated unfairness mistreatment erroneously defamatory fraudulently |
0% |
4.5% detention detainee trafficking detaining detained breach breaches detainees infringed |
|
Spanish Corpus | TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) | ||||
Legal terms | Territory | Evaluative items | Family | Crime | |
87.12% sentencia recurso apelación artículo art jurisprudencia contencioso auto juzgado administrativo tribunal sección |
7.48% territorio permanencia retorno estancia residencia extranjero extranjería empadronado |
1.19% irregular proporcional indefensión privativa grave agravantes |
3.59% matrimonio reagrupación esposo familiar reagrupante cónyuge matrimonial tutela arraigar |
0.59% multar sanción lesión criminal |
|
Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) | |||||
Legal terms | Territory | Evaluative items | Family | Crime | |
89.4% sentencia recurso administrativo contencioso jurisprudencia tribunal directiva procedimiento |
4.22% retorno residencia extranjero estancia nacionales nacionalidad asilo Schengen |
2.45% irregular proporcionalidad controvertida irregularmente grave pretensiones debidamente proporcionada |
1.4% arraigo familiar matrimonio reagrupante |
2.46% multa penal delito indocumentado infracciones trata pena criminal |
|
Chung (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. | |||||
Legal terms | Territory | Evaluative items | Family | Crime | |
96.42% apelante apelada impugnada roj cendoj stsj tjue jurisprudencial loex |
0.51% empadronado |
0.51% desvirtuado |
2.55% reagrupante reagrupada reagrupar reagrupado ascendientes |
0% |
Table 5 also displays the proportion of terms included in each category (expressed in percentages) with respect to the top 500 terms in each language for each method. As a whole, general legal terms such as appellant or cross-examination in English or recurso (appeal) and auto (court order) in Spanish, as was to be expected, stand out as the most numerous category. The rationale behind this result is that the principal technique which the three assessed methods rely upon is corpus comparison. Regardless of the greater or lesser degree of sophistication of the algorithms employed in ATR, the comparison of a specialized corpus against a general one, using frequency as the major parameter for term retrieval, necessarily implies that highly specialized terms, whose frequency of usage in general language is low, will be pushed to the top of the term ranking. This becomes more evident in Spanish, finding that it is the predominant thematic category and contains practically the entirety of the terms retrieved (96.42%), especially after applying Chung’s (2003)Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. method.
The results were similar in English, although the proportion of general legal terms was lower. Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) is the method that identified the largest amount of these, 82.1%, although it also achieves to bring to the forefront other thematic areas like territory, evaluation or crime, including 7.39%, 4.66% and 5.44% items respectively. As a whole, although ATR method precision might be higher in Spanish, as demonstrated in Section 4.1, judging by the figures displayed in Table 5, the capacity of these methods to identify a wider array of topics is not so high in this language. Nonetheless, TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) appears to be the one that extracts a greater proportion of items belonging in the groups territory (7.48% elements), family (3.59%) and evaluation (1.19%). On the contrary, Chung’s method, which only contrasts term frequency without considering other parameters like distribution or probability (broadly speaking), identifies a marginal number of terms other than those in the legal term group. As illustrated in Table 5, except for the category family, where we find 2.55% of the terms extracted, the remaining three, territory, evaluation and crime do not even reach 1%.
Therefore, leaving aside the thematic group legal terms, which, as stated above, clearly refers to the legal genre the corpus texts belong in, that of judicial decisions (the terms appellant, judge, case, court or tribunal instantiate this fact), except for Chung’s output list in Spanish and, in general, the category family in English, the three methods offer a wide variety of examples that might act as a point of departure for the further exploration of the corpora at hand.
To begin with, the thematic group territory in English clearly highlights the relevance of asylum requests as a major subject which the English corpus revolves around, given that the terms asylum and refugee are amongst the top terms extracted by the three ATR methods. Similarly, other terms like extradition, deport, deportation or relocation relate to this topic and can be found in the three term lists. In a similar fashion, the concept of residence connects with asylum and deportation, as well as other realizations of that lemma, namely, resident, residence or reside.
On the contrary, the Spanish group territory is less populated and does not seem to demonstrate such a strong connection with the notion of asylum as the English corpus does. In fact, the term asilo was only retrieved by Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) in Spanish. However, the term residence deploys itself throughout the Spanish corpus as well as it does in its English counterpart although its presence is more relevant, covering a considerable proportion of the items in the category, terms like residencia (residence), empadronado (registered as resident), permanencia (permanence), nacional (national/domestic), nacionalidad (nationality) or estancia (stay) exemplify this circumstance.
Similarly to territory, the category evaluative terms is considerably numerous in English, as presented in Table 5, containing 8.5% terms on average in contrast with the Spanish set, where we only find 1.38% of these elements. Even so, the items comprised in both text collections have something in common, their negative connotations. Terms like degrading, inhuman, irrational, disproportionate, insurmountable or mistreatment in English and indefensión (helplessness), grave (serious), controvertida (controversial) or desvirtuado (distorted) in Spanish convey the attitudinal positioning on the part of the speaker that might be worth further scrutiny, since these elements may point at sensitive topics in connection with immigration and help to characterize this phenomenon as seen through the eyes of the judiciary.
On the other hand, the degree of representativeness of the category family in the English corpus is barely inexistent, comprising only 0.45% terms on average, yet, the elements within this group and the statistical data associated with their usage might signal the relevance that family issues have in migration processes. Words like marriage, father or spouse illustrate this trend. Likewise, the data provided by the Spanish corpus in relation to familiar issues (including 2.5% terms on average), which partially overlap with the items retrieved from the English text collection, enrich our perception of the fundamental role played by families in migration processes and their connection with the legal scenario. As well as other items like matrimonio (marriage), familiar (familiar) or esposo (husband), the lemma reagrupar (bringing the members of a family back together) and all its variants, coupled with tutela (guardianship) and arraigar (take root in a country), insist on the need migrants express to keep their families reunited and the essential role that children play in legal processes related to immigration. Still, a closer examination of the context of usage of all these terms would be necessary to reach sound conclusions in relation to this and other topics enumerated in this section. However, such analysis falls out of the scope of the present research.
Lastly, the category crime, as was to be expected, stands third as regards the number of terms it gathers in English (4.8% on average), whereas in Spanish it roughly reaches 1%. Let us insist on the fact that Chung’s method does not extract any of these elements from this text collection. The terms which the three ATR methods at hand identified as members of this category basically revolve around two axes, on the one hand, general legal terms associated to criminal behaviour and its punishment such as offender, breach, imprisonment, lesión (injuries) or multa (penalty) and, on the other hand, specific terms referring to actual criminal activities like trafficking, torture or persecution, which might deserve specific attention. Their context of usage should be explored further though, so as to clarify the specific conditions displayed in judicial decisions that might present migrants as victims of human trafficking or torture, being persecuted in their home countries or threatened and forced to be part of this criminal activity, or as an active part of human trafficking networks and members of criminal organizations.
4.2.2Semantic categorization using UMUTextStats
As suggested by Bisceglia, Calabrese, and Leone (2014)Bisceglia, Bruno, Rita Calabrese, and Ljubica Leone 2014 “Combining Critical Discourse Analysis and NLP Tools in Investigations of Religious Prose.” LRE-REL2. Proceedings of the 2nd Workshop on Language Resources and Evaluation for Religious Texts. 31 May 2014, Reykjavik, Iceland, edited by Claire Brierley, Majdi Sawalha & Eric Atwell, 24–29. http://www.lrec-conf.org/proceedings/lrec2014/workshops/LREC2014Workshop-LRE-Rel2%20Proceedings.pdf, and Jumaquio-Ardales, Oco, and Madula (2017)Jumaquio-Ardales, Alona, Nathaniel Oco, and Rowell Madula 2017 “Click-analysis of a Lesbian Online Community in Facebook Using the Critical Discourse Analysis and Natural Language Processing.” Humanities Diliman: A Philippine Journal of Humanities 14(1):46–68., the use of Natural Language Processing (NLP) tools in combination with more standard corpus analysis techniques such as keyword analysis or collocate extraction might also enhance our knowledge of the semantic and morphological categories of the lexicon in a corpus. This is why, this section introduces the automatic categorization of the lexical items found in both corpora using the software UMUTextStats (García-Díaz et al. 2018García-Díaz, José Antonio, María Pilar Salas-Zárate, María Luisa Hernández-Alcaraz, Rafael Valencia-García, and Juan Miguel Gómez-Berbís 2018 “Machine Learning Based Sentiment Analysis on Spanish Financial Tweets.” In Trends and Advances in Information Systems and Technologies (WorldCIST’18 2018). Advances in Intelligent Systems and Computing, Vol. 745, edited by Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis and Sandra Costanzo, 305–311. Springer: Cham. ; García-Díaz, Cánovas-García, and Valencia-García 2020García-Díaz, José Antonio, Mar Cánovas-García, and Rafael Valencia-García 2020 “Ontology-driven Aspect-based Sentiment Analysis Classification: An Infodemiological Case Study Regarding Infectious Diseases in Latin America.” Future Generation Computer Systems 112:641–657. ), a text classification software, built on similar technology to the well-known Language Inquiry and Word Count – LIWC (Pennebaker, and Francis 1999Pennebaker, J. W. and M. Francis 1999 Linguistic Inquiry and Word Count: LIWC. Erlbaum Publishers.), which could be regarded as a useful tool to examine the emotional, cognitive and structural components contained in language on a word-by-word basis by determining the percentage of words which belong in those categories. The major difference between LIWC and UMUTextStats lies in the fact that the latter adds a linguistic basis of European Spanish and also several categories which are not word-based. The software described herein can process large amounts of text and the result is a vector consisting of different features which range from grammatical information such as the total amount of pronouns, negations, or auxiliary verbs (amongst other) to other psycholinguistic categories like emotions, named entities, or cognitive processes.
It is worth noting that in the dictionaries used by the software, lexical items were formalized by means of regular expressions, that is to say, search strings that can be used to specify sequences of characters to be extracted from a text or corpus (Jurafsky, and Martin 2019Jurafsky, Daniel and James H. Martin 2019 Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Upper Saddle River: Els autors.). Thus, for instance, doméstico/a/os/as (domestic) was formalized as doméstic[oa]s?, which is interpreted by the software as the string of characters domestic- followed either by -o or -a, and after that sequence, an optional -s. Some other examples comprise broader possibilities, such as the regular expression abraz\w*, which matches the string abraz- followed by any repetitions (*) of any alphanumeric character (\w), allowing for the retrieval from the corpus of the whole verbal conjugation of abrazar (to hug), the noun abrazo(s) (hug/s), or, in general, any word built on the stem abraz-.
Let us briefly examine the most relevant categories identified by the software in the Spanish and English corpora. As shown in Table 6, the top 5 Spanish categories that reflect the semantic content of the items comprised in them relate to topics labelled as social-analytic (21.3%), a very broad category which includes terms1515.These examples have been extracted from the dictionary library included in the software tool. like absolución (acquittal), abogado (solicitor/lawyer) but also cacao (cocoa) or mariposa (butterfly); organizations (17.84%), exemplified by tribunal supremo (supreme court), ONG (NGO) or PP/PSOE (major political parties in Spain) and locations (6.79%), for instance, country names, cities or more specific places.
Mean | |
---|---|
lexical-social-analytic | 21.30% |
lexical-organizations | 17.84% |
lexical-locations | 6.79% |
lexical-persons | 6.79% |
lexical-social-relativity-space | 5.64% |
Table 7 reflects the top 5 categories resulting from the automatic processing of the English corpus. Although the proportion of items in each category is considerably lower than the data displayed above, there is a coincidence between the top two categories, organizations and social-analytic, although, in this case, organizations ranks first in English. As regards the actual percentage of items comprised in each category, organizations represents 10.49% of the types found in the corpus (with words such as court, conservatives or labour), followed by social-analytic, which covers 3.27% of the types (varied terms like sentence, trial, loneliness or prostitute belong in this category), and lexical-social-relativity-movement, ranking third with 2.68% of the types found in the corpus (approach, exit, or flee are included within this thematic group).
As illustrated by the examples provided, only two of these categories partially coincide with the ones defined in Section 4.2.1, namely, movement and locations, which might be paired with territory. However, if the major purpose of classifying the lexicon in a text collection was to try and find out what major topics a legal corpus revolves around, such broad categories as social-analytic, although they may reveal some interesting themes in connection with immigration like prostitution, are far too inclusive to be able to actually signal specific thematic areas for further analysis.
Mean | |
---|---|
lexical-organizations | 10.49% |
lexical-social-analytic | 3.27% |
lexical-social-relativity-movement | 2.68% |
lexical-social-cognitive-insight | 2.38% |
psycholinguistic-processes-positive | 1.82% |
In sum, a software like UMUTextStats offers the possibility of determining the proportion of terms/lexical items falling into each of the morphosemantic and psycholinguistic categories defined in it, which range from words containing different types of affixes, to functional and lexical word classes or words referring to persons, locations, time, space or movement, amongst other. Yet, it does not extract the specialized terms in a corpus and then classify them according to their features, but rather determines the percentage of types in a text collection which fall into each of these categories with respect to the entire type count. Thus, although it does provide a much broader characterization of the lexicon (performed in a fully automatic manner) than the one presented in the previous section, it does not facilitate the actual examination of the items in each category, as it is solely focused on the quantification of such items, rather than on their extraction or their context of usage. Moreover, some of the categories included in it are far too broad to actually point at specific themes or topics susceptible of further analysis.
From a quantitative perspective, the fact that a tool like UMUTextStats manages to obtain the percentage of lexical items that fall into each of these categories without considering other parameters such as distribution, might push to the top of the rank some thematic categories which may not be representative of the corpus in its entirety, but rather of a set of texts where certain words are used recurrently. On the contrary, Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. and Scott’s (2008) methods (this is not so for Chung’s) pinpoint those lexical elements whose statistical relevance make them stand out within a corpus as a whole, deeming distribution a fundamental parameter to determine their position within the term ranking and thus potentially pointing at their degree of representativeness and their thematic relevance.
5.Conclusion
This chapter has sought to raise awareness on the need to apply ATR Methods to the lexical profiling of legal texts. For that purpose, three of these methods (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ; Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.; Chung 2003Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. ) were implemented on two corpora of Spanish and English judicial decisions to measure their degree of reliability in automatically identifying legal terms. Two of them (Drouin’s TermoStat, 2003 and Scott’s Keywords, 2008a) allow the user to process corpora by simply uploading a specialized text collection to the system (Drouin’s method) or rather processing it with the software tool included in a software package (Scott’s method). The major difference between these two methods as regards implementation lies in the fact that, on the one hand, Drouin’s software is freely available online (Scott’s requires a license) and, on the other hand, it does not involve the use of general language corpora on the part of the user, as the software already includes some in several languages. Concerning the degree of expertise implied in managing both software packages, it is Drouin’s method which appears to be more straightforward and easier to manage by the user, who can process a corpus quite intuitively without requiring any further assistance.
Firstly, The application of Chung’s method was more complex since it required the manual implementation of the algorithm proposed by the author, an elaborate task that was facilitated greatly by using an Excel spreadsheet. Even so, the process was time-consuming because it forces the user to be relatively proficient in managing this type of software (it requires the use of complex formulas to search the results and then determine a term’s frequency ratio).
Secondly, the degree of efficiency achieved by each of these methods was calculated after obtaining the CT lists and then validating them by determining the percentage of TTs contained amongst the top 500 CT extracted. The results were similar across languages, although slightly higher in Spanish than in English. TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ), Keywords (Scott 2008aScott, Mike 2008a WordSmith Tools, Version 5. Liverpool: Lexical Analysis Software.) and Chung’s ratio method (2003Chung, Teresa Mihwa 2003 “A Corpus Comparison Approach for Terminology Extraction.” Terminology 9(2):221–246. ) reached 66.8%, 56.6% and 47.4% precision respectively in Spanish, standing, on average, 5 points above the results obtained in English.
Thirdly, the 500 terms identified by the three methods were classified into five thematic categories, legal terms being the most populated one and containing 76.07% and 90.98% items in English and Spanish respectively, as was to be expected. These figures clearly indicate that the terms retrieved by these ATR methods, in spite of them being more efficient in Spanish, are better distributed into thematic areas in English. However, Chung’s method failed to detect different topics amongst the terms it identified, as it pushed to the top of the term list highly specialized legal terms almost in their entirety in Spanish. The other four categories, namely, territory, evaluative items, family and crime distributed themselves unevenly across these two languages, finding territory as the second most populated group followed by evaluative items. Out of the three ATR methods assessed, TermoStat (Drouin 2003Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. ) excelled the other two as regards its ability to embrace a larger proportion of terms within each thematic category, as shown in Table 5, where these four areas contain a more balanced proportion of terms both in Spanish and in English.
Finally, in order to reply to the question posed in the title Do ATR methods provide a shorter path to lexical profiling?, both text collections were also processed with UMUTextStats (García-Díaz et al. 2018García-Díaz, José Antonio, María Pilar Salas-Zárate, María Luisa Hernández-Alcaraz, Rafael Valencia-García, and Juan Miguel Gómez-Berbís 2018 “Machine Learning Based Sentiment Analysis on Spanish Financial Tweets.” In Trends and Advances in Information Systems and Technologies (WorldCIST’18 2018). Advances in Intelligent Systems and Computing, Vol. 745, edited by Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis and Sandra Costanzo, 305–311. Springer: Cham. ; García-Díaz, Cánovas-García, and Valencia-García 2020García-Díaz, José Antonio, Mar Cánovas-García, and Rafael Valencia-García 2020 “Ontology-driven Aspect-based Sentiment Analysis Classification: An Infodemiological Case Study Regarding Infectious Diseases in Latin America.” Future Generation Computer Systems 112:641–657. ), an unsupervised text classification tool which facilitates the automatic analysis of corpora for the classification of their lexicon into morphosemantic categories, which are represented in relation to the proportion of lexical items falling into each of these categories with respect to the entire type list. The process of implementation of this procedure was certainly faster and easier than the one described in Section 4.2.1., yet, the software could solely point at the most relevant themes in the corpus based on the amount of elements comprised in each thematic category, regardless of their distribution throughout the corpus or their salience with respect to other non-specialized texts collections. This type of tools might be excellent for automatic text classification or authorship attribution, as they work fully automatically and do not require any supervision, but their application to discourse studies based on thematic categorization might be limited.
Conversely, the implementation of ATR methods facilitated the identification of the most relevant themes in both corpora after creating ad hoc categories to classify the top 500 terms extracted and comparing them. Although the thematic classification took longer, given the fact that UMUTextStats does not produce any term lists and does not give access to their context of usage (apart from it not focusing on such parameters as distribution), it is recommendable to resort to ATR methods as a point of departure (particularly Drouin’s (2003)Drouin, Patrick 2003 “Term Extraction Using Non-technical Corpora as a Point of Leverage.” Terminology 9(1):99–115. for the different reasons stated above) for the lexical profiling of legal texts, as it seems to be the shortest path to do so in a more reliable manner, particularly when the major aim is studying legal discourse, only requiring manual work for the thematic categorization phase.
To conclude, as regards future research, this proposal presents a working methodology which may allow for a deeper and more comprehensive understanding of legal texts. As authors acknowledge, the literature devoted to the assessment of ATR methods is scarce, even more so within the legal field, thus, using this proposal as reference might facilitate considerably the scrutiny of other corpora by firstly identifying the terms in them and then moving onto the definition of the major topics they revolve around. In fact, this methodology might be applicable to the study of other public legal genres such as legislative or administrative texts which may relate to the topic of immigration and could be compared to judicial decisions such as the ones at hand, in search of different perspectives from which such a complex phenomenon could be depicted.