References (152)
Amassian, V., Mari, Z., Sagliocco, L., Hassan, N., Maccabee, P., Cracco, J.B., Cracco, R.Q., & Bodis-Wollner, I. (2008). Perception of phosphenes and flashed alphabetical characters is enhanced by single-pulse transcranial magnetic stimulation of anterior frontal lobe: The thalamic gate hypothesis. Perception, 37(3), 375–388. DOI logoGoogle Scholar
Amassian, V.E., Cracco, R.Q., Maccabee, P.J., Cracco, J.B., Rudell, A., & Eberle, L. (1989). Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalography and Clinical Neurophysiology, 74(6), 458–462. DOI logoGoogle Scholar
Amassian, V.E., Cracco, R.Q., Maccabee, P.J., Cracco, J.B., Rudell, A.P., & Eberle, L. (1993). Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry. Brain Research, 605(2), 312–316. DOI logoGoogle Scholar
Aru, J., Bachmann, T., Singer, W., & Melloni, L. (2012). Distilling the neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(2), 737–746. DOI logoGoogle Scholar
Baars, B.J. (1988). A cognitive theory of consciousness. New York, NY: Cambridge University Press.Google Scholar
Bachmann, T. (2009). Finding ERP-signatures of target awareness: Puzzle persists because of experimental co-variation of the objective and subjective variables. Consciousness and Cognition, 18(3), 804–808. DOI logoGoogle Scholar
Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16(5), 712–717. DOI logoGoogle Scholar
Beck, F., & Eccles, J.C. (1992). Quantum aspects of brain activity and the role of consciousness. Proceedings of the National Academy of Sciences USA, 89(23), 11357–11361. DOI logoGoogle Scholar
Bestmann, S., Baudewig, J., Siebner, H.R., Rothwell, J.C., & Frahm, J. (2003). Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage, 20(3), 1685–1696. DOI logoGoogle Scholar
. (2004). Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. European Journal of Neuroscience, 19(7), 1950–1962. DOI logoGoogle Scholar
Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and Mind, 2(1), 5–38. DOI logoGoogle Scholar
Blanke, O. (2012). Multisensory brain mechanisms of bodily self-consciousness. Nature Reviews Neuroscience, 13(8), 556–571.Google Scholar
Block, N. (2005). Two neural correlates of consciousness. Trends in Cognitive Sciences, 9(2), 46–52. DOI logoGoogle Scholar
Boyer, J.L., Harrison, S., & Ro, T. (2005). Unconscious processing of orientation and color without primary visual cortex. Proceedings of the National Academy of Sciences USA, 102(46), 16875–16879. DOI logoGoogle Scholar
Breese, B.B. (1899). On inhibition. Psychological Monographs, 3(1), 1–65. DOI logoGoogle Scholar
Breitmeyer, B., & Öğmen, H. (2006). Visual masking: Time slices through conscious and unconscious vision. New York, NY: Oxford University Press. DOI logoGoogle Scholar
Busch, N.A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869–7876. DOI logoGoogle Scholar
Carmel, D., Walsh, V., Lavie, N., & Rees, G. (2010). Right parietal TMS shortens dominance durations in binocular rivalry. Current Biology, 20(18), R799–R800. DOI logoGoogle Scholar
Chalmers, D.J. (1996). The conscious mind: In search of a fundamental theory. New York, NY: Oxford University Press.Google Scholar
. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness: Empirical and conceptual questions (pp.17–39). Cambridge, MA: MIT Press.Google Scholar
Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences USA, 95(3), 831–838. DOI logoGoogle Scholar
Coull, J.T., Frith, C.D., Frackowiak, R.S.J., & Grasby, P.M. (1996). A fronto-parietal network for rapid visual information processing: A pet study of sustained attention and working memory. Neuropsychologia, 34(11), 1085–1095. DOI logoGoogle Scholar
Crick, F. (1994). The astonishing hypothesis: The scientific search for the soul. New York, NY: Touchstone.Google Scholar
Crick, F., & Koch, C. (1995). Are we aware of neural activity in primary visual cortex? Nature, 375(6527), 121–123. DOI logoGoogle Scholar
. (1998). Consciousness and neuroscience. Cerebral Cortex, 8(2), 97–107. DOI logoGoogle Scholar
de Graaf, T.A., Cornelsen, S., Jacobs, C., & Sack, A.T. (2011). TMS effects on subjective and objective measures of vision: Stimulation intensity and pre- versus post-stimulus masking. Consciousness and Cognition, 20(4), 1244–1255. DOI logoGoogle Scholar
de Graaf, T.A., de Jong, M.C., Goebel, R., van Ee, R., & Sack, A.T. (2011). On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cerebral Cortex, 21(10), 2322–2331. DOI logoGoogle Scholar
de Graaf, T.A., Goebel, R., & Sack, A.T. (2012). Feedforward and quick recurrent processes in early visual cortex revealed by TMS? Neuroimage, 61(3), 651–659. DOI logoGoogle Scholar
de Graaf, T.A., Herring, J., & Sack, A.T. (2011). A chronometric exploration of high-resolution ‘sensitive TMS masking’ effects on subjective and objective measures of vision. Experimental Brain Research, 209(1), 19–27. DOI logoGoogle Scholar
de Graaf, T.A., Hsieh, P.-J., & Sack, A.T. (2012). The ‘correlates’ in neural correlates of consciousness. Neuroscience & Biobehavioral Reviews, 36(1), 191–197. DOI logoGoogle Scholar
de Graaf, T.A., & Sack, A.T. (2011). Null results in TMS: From absence of evidence to evidence of absence. Neuroscience & Biobehavioral Reviews, 35(3), 871–877. DOI logoGoogle Scholar
. (2014). Using brain stimulation to disentangle neural correlates of conscious vision. Frontiers in Psychology, 5, 1019. DOI logoGoogle Scholar
Dehaene, S., & Changeux, J.-P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70(2), 200–227. DOI logoGoogle Scholar
Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. DOI logoGoogle Scholar
Dehaene, S., Naccache, L., Cohen, L., Bihan, D.L., Mangin, J.-F., Poline, J.-B., & Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4(7), 752–758. DOI logoGoogle Scholar
Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., van de Moortele, PF., & Le Bihan, D. (1998). Imaging unconscious semantic priming. Nature, 395(6702), 597–600. DOI logoGoogle Scholar
Dierks, T., Linden, D.E.J., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., & Singer, W. (1999). Activation of Heschl’s gyrus during auditory hallucinations. Neuron, 22(3), 615–621. DOI logoGoogle Scholar
Edelman, G.M., & Tononi, G. (2000). Universe of consciousness: How matter becomes imagination. New York, NY: Basic Books.Google Scholar
Fang, F., & He, S. (2005). Cortical responses to invisible objects in the human dorsal and ventral pathways. Nature Neuroscience, 8(10), 1380–1385. DOI logoGoogle Scholar
Feinberg, T.E. (2012). Neuroontology, neurobiological naturalism, and consciousness: A challenge to scientific reduction and a solution. Physics of Life Reviews, 9(1), 13–34. DOI logoGoogle Scholar
Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B.A., Angelini, G., Tononi, G., & Pearce, R.A. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proceedings of the National Academy of Sciences USA, 107(6), 2681–2686. DOI logoGoogle Scholar
Formisano, E., & Goebel, R. (2003). Tracking cognitive processes with functional MRI mental chronometry. Current Opinion in Neurobiology, 13(2), 174–181. DOI logoGoogle Scholar
Fox, P.T., & Lancaster, J.L. (2002). Mapping context and content: The brainmap model. Nature Reviews Neuroscience, 3(4), 319–321. DOI logoGoogle Scholar
Fox, R. (1991). Binocular rivalry. In D.M. Regan (Ed.), Binocular vision and psychophysics (pp.93–110). London, UK: MacMillan Press.Google Scholar
Friston, K.J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302. DOI logoGoogle Scholar
Gallagher, S., & Zahavi, D. (2010). Phenomenological approaches to self-consciousness. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2010 edition). Retrieved from [URL]
Goebel, R., Muckli, L., Zanella, F.E., Singer, W., & Stoerig, P. (2001). Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Research, 41(10–11), 1459–1474. DOI logoGoogle Scholar
Goebel, R., Roebroeck, A., Kim, D.-S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magnetic Resonance Imaging, 21(10), 1251–1261. DOI logoGoogle Scholar
Gosseries, O., Bruno, M.-A., Chatelle, C., Vanhaudenhuyse, A., Schnakers, C., Soddu, A., & Laureys, S. (2011). Disorders of consciousness: What’s in a name? Neurorehabilitation, 28(1), 3–14.Google Scholar
Gusnard, D.A. (2005). Being a self: Considerations from functional imaging. Consciousness and Cognition, 14(4), 679–697. DOI logoGoogle Scholar
Haynes, J.-D., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature, 438(7067), 496–499. DOI logoGoogle Scholar
Haynes, J.-D., Driver, J., & Rees, G. (2005). Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron, 46(5), 811–821. DOI logoGoogle Scholar
Haynes, J.-D., & Rees, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. Current Biology, 15(14), 1301–1307. DOI logoGoogle Scholar
Helfrich, R.F., Schneider, T.R., Rach, S., Trautmann-Lengsfeld, S.A., Engel, A.K., & Herrmann, C.S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24(3), 333–339. DOI logoGoogle Scholar
Hohwy, J. (2009). The neural correlates of consciousness: New experimental approaches needed? Consciousness and Cognition, 18(2), 428–438. DOI logoGoogle Scholar
Howard, I.P., & Rogers, B.J. (1995). Binocular vision and stereopsis. New York, NY: Oxford University Press.Google Scholar
Inui, T., Tanaka, S., Okada, T., Nishizawa, S., Katayama, M., & Konishi, J. (2000). Neural substrates for depth perception of the necker cube; a functional magnetic resonance imaging study in human subjects. Neuroscience Letters, 282(3), 145–148. DOI logoGoogle Scholar
Jacobs, C., Goebel, R., & Sack, A.T. (2011). Visual awareness suppression by pre-stimulus brain stimulation; a neural effect. Neuroimage, 59(1), 616–624. DOI logoGoogle Scholar
Jacobs, C., & Sack, A.T. (2012). Behavior in oblivion: The neurobiology of subliminal priming. Brain Sciences, 2(2), 225–241. DOI logoGoogle Scholar
Kanai, R., Bahrami, B., & Rees, G. (2010). Human parietal cortex structure predicts individual differences in perceptual rivalry. Current Biology, 20(18), 1626–1630. DOI logoGoogle Scholar
Kanai, R., & Tsuchiya, N. (2012). Qualia. Current Biology, 22(10), R392–R396. DOI logoGoogle Scholar
Kim, C.-Y., & Blake, R. (2005). Psychophysical magic: Rendering the visible ‘invisible’. Trends in Cognitive Sciences, 9(8), 381–388. DOI logoGoogle Scholar
Kleinschmidt, A., Büchel, C., Zeki, S., & Frackowiak, R.S.J. (1998). Human brain activity during spontaneously reversing perception of ambiguous figures. Proceedings of the Royal Society of London B: Biological Sciences, 265(1413), 2427–2433. DOI logoGoogle Scholar
Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood, CO: Roberts & Company.Google Scholar
Koch, C., & Tsuchiya, N. (2007). Attention and consciousness: Two distinct brain processes. Trends in Cognitive Sciences, 11(1), 16–22. DOI logoGoogle Scholar
. (2012). Attention and consciousness: Related yet different. Trends in Cognitive Sciences, 16(2), 103–105. DOI logoGoogle Scholar
Koivisto, M., Lähteenmäki, M., Sørensen, T.A., Vangkilde, S., Overgaard, M., & Revonsuo, A. (2008). The earliest electrophysiological correlate of visual awareness? Brain and Cognition, 66(1), 91–103. DOI logoGoogle Scholar
Koivisto, M., Mäntylä, T., & Silvanto, J. (2010). The role of early visual cortex (V1/V2) in conscious and unconscious visual perception. Neuroimage, 51(2), 828–834. DOI logoGoogle Scholar
Koivisto, M., Railo, H., & Salminen-Vaparanta, N. (2011). Transcranial magnetic stimulation of early visual cortex interferes with subjective visual awareness and objective forced-choice performance. Consciousness and Cognition, 20(2), 288–298. DOI logoGoogle Scholar
Koivisto, M., & Revonsuo A. (2009). Event-related brain potential correlates of visual awareness. Neuroscience & Biobehavioral Reviews, 34(6), 922–934. DOI logoGoogle Scholar
Lau, H.C. (2008). A higher order Bayesian decision theory of consciousness. Progress in Brain Research, 168, 35–48. DOI logoGoogle Scholar
Lau, H.C., & Passingham, R.E. (2006). Relative blindsight in normal observers and the neural correlate of visual consciousness. Proceedings of the National Academy of Sciences USA, 103(49), 18763–18768. DOI logoGoogle Scholar
Lee, S.-H., Blake, R., & Heeger, D.J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neuroscience, 8(1), 22–23. DOI logoGoogle Scholar
Levelt, W.J.M. (1965). On binocular rivalry. Soesterberg, Netherlands: Institute for Perception R.V.O.-T.N.O.Google Scholar
Logothetis, N. (1998). Object vision and visual awareness. Current Opinion in Neurobiology, 8(6), 536–544. DOI logoGoogle Scholar
Logothetis, N.K., Leopold, D.A., & Sheinberg, D.L. (1996). What is rivalling during binocular rivalry? Nature, 380(6575), 621–624. DOI logoGoogle Scholar
Luck, S.J., Vogel, E.K., & Shapiro, K.L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 383(6601), 616–618. DOI logoGoogle Scholar
Lumer, E.D., Friston, K.J., & Rees, G. (1998). Neural correlates of perceptual rivalry in the human brain. Science, 280(5371), 1930–1934. DOI logoGoogle Scholar
Lumer, E.D., & Rees, G. (1999). Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. Proceedings of the National Academy of Sciences USA, 96(4), 1669–1673. DOI logoGoogle Scholar
Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.Google Scholar
Marois, R., Yi, D.-J., & Chun, M.M. (2004). The neural fate of consciously perceived and missed events in the attentional blink. Neuron, 41(3), 465–472. DOI logoGoogle Scholar
Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228–2232. DOI logoGoogle Scholar
Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M., & Ro, T. (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725–2732. DOI logoGoogle Scholar
Melloni, L., Schwiedrzik, C.M., Müller, N., Rodriguez, E., & Singer, W. (2011). Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness. Journal of Neuroscience, 31(4), 1386–1396. DOI logoGoogle Scholar
Melloni, L., & Singer, W. (2010). Distinct characteristics of conscious experience are met by large-scale neuronal synchronization. In E.K. Perry, D. Collerton, F.E.N. LeBeau, & H. Ashton (Eds.), New horizons in the neuroscience of consciousness (pp.17–28). Advances in Consciousness Research (Vol. 79). Amsterdam, The Netherlands: John Benjamins Publishing Company. DOI logoGoogle Scholar
Merikle, P.M., & Joordens, S. (1997). Parallels between perception without attention and perception without awareness. Consciousness and Cognition, 6(2–3), 219–236. DOI logoGoogle Scholar
Miller, S.M. (2001). Binocular rivalry and the cerebral hemispheres: With a note on the correlates and constitution of visual consciousness. Brain and Mind, 2(1), 119–149. DOI logoGoogle Scholar
. (2007). On the correlation/constitution distinction problem (and other hard problems) in the scientific study of consciousness. Acta Neuropsychiatrica, 19(3), 159–176. DOI logoGoogle Scholar
. (Ed.). (2013). The constitution of visual consciousness: Lessons from binocular rivalry. Advances in Consciousness Research (Vol. 90). Amsterdam, The Netherlands: John Benjamins Publishing Company. DOI logoGoogle Scholar
Miller, S.M., Liu, G.B., Ngo, T.T., Hooper, G., Riek, S., Carson, R.G., & Pettigrew, J.D. (2000). Interhemispheric switching mediates perceptual rivalry. Current Biology, 10(7), 383–392. DOI logoGoogle Scholar
Morris, J.S., Öhman, A., & Dolan, R.J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences USA, 96(4), 1680–1685. DOI logoGoogle Scholar
Moutoussis, K., Keliris, G., Kourtzi, Z., & Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain. Vision Research, 45(17), 2231–2243. DOI logoGoogle Scholar
Moutoussis, K., & Zeki, S. (2002). The relationship between cortical activation and perception investigated with invisible stimuli. Proceedings of the National Academy of Sciences USA, 99(14), 9527–9532. DOI logoGoogle Scholar
. (2006). Seeing invisible motion: A human fMRI study. Current Biology, 16(6), 574–579. DOI logoGoogle Scholar
Naccache, L., Gaillard, R., Adam, C., Hasboun, D., Clémenceau, S., Baulac, M., Dehaene, S., & Cohen, L. (2005). A direct intracranial record of emotions evoked by subliminal words. Proceedings of the National Academy of Sciences USA, 102(21), 7713–7717. DOI logoGoogle Scholar
Naghavi, H.R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14(2), 390–425. DOI logoGoogle Scholar
Neisser, J. (2012). Neural correlates of consciousness reconsidered. Consciousness and Cognition, 21(2), 681–690. DOI logoGoogle Scholar
Nobre, A.C., Coull, J.T., Frith, C.D., & Mesulam, M.M. (1999). Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 2(1), 11–12. DOI logoGoogle Scholar
Noë, A., & Thompson, E. (2004). Are there neural correlates of consciousness? Journal of Consciousness Studies, 11(1), 3–28.Google Scholar
O’Regan, J.K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939–973. DOI logoGoogle Scholar
Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., & Pickard, J.D. (2006). Detecting awareness in the vegetative state. Science, 313(5792), 1402. DOI logoGoogle Scholar
Panagiotaropoulos, T.I., Deco, G., Kapoor, V., & Logothetis, N.K. (2012). Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron, 74(5), 924–935. DOI logoGoogle Scholar
Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237. DOI logoGoogle Scholar
Pasley, B.N., Mayes, L.C., & Schultz, R.T. (2004). Subcortical discrimination of unperceived objects during binocular rivalry. Neuron, 42(1), 163–172. DOI logoGoogle Scholar
Pessoa, L., Kastner, S., & Ungerleider, L.G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10), 3990–3998.Google Scholar
Pins, D., & ffytche, D. (2003). The neural correlates of conscious vision. Cerebral Cortex, 13(5), 461–474. DOI logoGoogle Scholar
Polonsky, A., Blake, R., Braun, J., & Heeger, D.J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3(11), 1153–1159. DOI logoGoogle Scholar
Posner, M.I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences USA, 91(16), 7398–7403. DOI logoGoogle Scholar
Quiroga, R.Q., Mukamel, R., Isham, E.A., Malach, R., & Fried, I. (2008). Human single-neuron responses at the threshold of conscious recognition. Proceedings of the National Academy of Sciences USA, 105(9), 3599–3604. DOI logoGoogle Scholar
Rees, G. (2007). Neural correlates of the contents of visual awareness in humans. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 877–886. DOI logoGoogle Scholar
Rees, G., Wojciulik, E., Clarke, K., Husain, M., Frith, C., & Driver, J. (2000). Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction. Brain, 123(8), 1624–1633. DOI logoGoogle Scholar
. (2002). Neural correlates of conscious and unconscious vision in parietal extinction. Neurocase, 8(5), 387–393. DOI logoGoogle Scholar
Revonsuo, A. (2000). Prospects for a scientific research program on consciousness. In T. Metzinger (Ed.), Neural correlates of consciousness: Empirical and conceptual questions (pp.57–75). Cambridge, MA: MIT Press.Google Scholar
. (2001). Can functional brain imaging discover consciousness in the brain? Journal of Consciousness Studies, 8(3), 3–23.Google Scholar
Ro, T., Shelton, D., Lee, O.L., & Chang, E. (2004). Extrageniculate mediation of unconscious vision in transcranial magnetic stimulation-induced blindsight. Proceedings of the National Academy of Sciences USA, 101(26), 9933–9935. DOI logoGoogle Scholar
Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage, 25(1), 230–242. DOI logoGoogle Scholar
Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation? Journal of Neuroscience, 30(25), 8692–8697. DOI logoGoogle Scholar
Ruff, C.C., Bestmann, S., Blankenburg, F., Bjoertomt, O., Josephs, O., Weiskopf, N., Deichmann, R., & Driver, J. (2008). Distinct causal influences of parietal versus frontal areas on human visual cortex: Evidence from concurrent TMS-fMRI. Cerebral Cortex, 18(4), 817–827. DOI logoGoogle Scholar
Ruff, C.C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J.-D., Rees, G., Josephs, O., Deichmann, R., & Driver, J. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16(15), 1479–1488. DOI logoGoogle Scholar
Sack, A.T., Camprodon, J.A., Pascual-Leone, A., & Goebel, R. (2005). The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308(5722), 702–704. DOI logoGoogle Scholar
Sack, A.T., Hubl, D., Prvulovic, D., Formisano, E., Jandl, M., Zanella, F.E., Maurer, K., Goebel, R., Dierks, T., & Linden, D.E.J. (2002). The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Cognitive Brain Research, 13(1), 85–93. DOI logoGoogle Scholar
Sack, A.T., Kohler, A., Bestmann, S., Linden, D.E.J., Dechent, P., Goebel, R., & Baudewig, J. (2007). Imaging the brain activity changes underlying impaired visuospatial judgments: Simultaneous fMRI, TMS, and behavioral studies. Cerebral Cortex, 17(12), 2841–2852. DOI logoGoogle Scholar
Schoth, F., Waberski, T.D., Krings, T., Gobbele, R., & Buchner, H. (2007). Cerebral processing of spontaneous reversals of the rotating Necker cube. Neuroreport, 18(13), 1335–1338. DOI logoGoogle Scholar
Sergent, C., & Naccache, L. (2012). Imaging neural signatures of consciousness: ‘What’, ‘when’, ‘where’ and ‘how’ does it work? Archives Italiennes de Biologie, 150(2–3), 91–106.Google Scholar
Seth, A.K. (2009). Functions of consciousness. In W.P. Banks (Ed.), Encyclopedia of consciousness, Vol. 1 (pp.279–293). Oxford, UK: Academic Press. DOI logoGoogle Scholar
Silva, S., Alacoque, X., Fourcade, O., Samii, K., Marque, P., Woods, R., Mazziotta, J., Chollet, F., & Loubinoux, I. (2010). Wakefulness and loss of awareness: Brain and brainstem interaction in the vegetative state. Neurology, 74(4), 313–320. DOI logoGoogle Scholar
Silvanto, J. (2008). A re-evaluation of blindsight and the role of striate cortex (V1) in visual awareness. Neuropsychologia, 46(12), 2869–2871. DOI logoGoogle Scholar
Silvanto, J., Lavie, N., & Walsh, V. (2005). Double dissociation of V1 and V5/MT activity in visual awareness. Cerebral Cortex, 15(11), 1736–1741. DOI logoGoogle Scholar
Sterzer, P., Kleinschmidt, A., & Rees, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13(7), 310–318. DOI logoGoogle Scholar
Sterzer, P., Russ, M.O., Preibisch, C., & Kleinschmidt, A. (2002). Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 15(4), 908–916. DOI logoGoogle Scholar
Thut, G., Schyns, P.G., & Gross, J. (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2, 170. DOI logoGoogle Scholar
Thut, G., Veniero, D., Romei, V., Miniussi, C., Schyns, P., & Gross, J. (2011). Rhythmic TMS causes local entrainment of natural oscillatory signatures. Current Biology, 21(14), 1176–1185. DOI logoGoogle Scholar
Tong, F. (2003). Primary visual cortex and visual awareness. Nature Reviews Neuroscience, 4(3), 219–229. DOI logoGoogle Scholar
Tong, F., & Engel, S.A. (2001). Interocular rivalry revealed in the human cortical blind-spot representation. Nature, 411(6834), 195–199. DOI logoGoogle Scholar
Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10(11), 502–511. DOI logoGoogle Scholar
Tong, F., Nakayama, K., Vaughan, J.T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21(4), 753–759. DOI logoGoogle Scholar
Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5, 42. DOI logoGoogle Scholar
. (2005). Consciousness, information integration, and the brain. Progress in Brain Research, 150, 109–126. DOI logoGoogle Scholar
van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816–1823. DOI logoGoogle Scholar
Velmans, M. (Ed.). (1996). The science of consciousness: Psychological, neuropsychological and clinical reviews. London, UK: Routledge. DOI logoGoogle Scholar
von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 224(4654), 1260–1262. DOI logoGoogle Scholar
Vuilleumier, P., & Driver, J. (2007). Modulation of visual processing by attention and emotion: Windows on causal interactions between human brain regions. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 837–855. DOI logoGoogle Scholar
Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. (2011). Attention but not awareness modulates the bold signal in the human V1 during binocular suppression. Science, 334(6057), 829–831. DOI logoGoogle Scholar
Weil, R.S., & Rees, G. (2011). A new taxonomy for perceptual filling-in. Brain Research Reviews, 67(1–2), 40–55. DOI logoGoogle Scholar
Weiskrantz, L. (1996). Blindsight revisited. Current Opinion in Neurobiology, 6(2), 215–220. DOI logoGoogle Scholar
Wheatstone, C. (1838). Contributions to the physiology of vision. – Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London, 128, 371–394. DOI logoGoogle Scholar
Wilenius, M.E., & Revonsuo, A.T. (2007). Timing of the earliest ERP correlate of visual awareness. Psychophysiology, 44(5), 703–710. DOI logoGoogle Scholar
Wunderlich, K., Schneider, K.A., & Kastner, S. (2005). Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neuroscience, 8(11), 1595–1602. DOI logoGoogle Scholar
Zaidi, Q., Ennis, R., Cao, D., & Lee, B. (2012). Neural locus of color afterimages. Current Biology, 22(3), 220–224. DOI logoGoogle Scholar
Zaretskaya, N., Thielscher, A., Logothetis, N.K., & Bartels, A. (2010). Disrupting parietal function prolongs dominance durations in binocular rivalry. Current Biology, 20(23), 2106–2111. DOI logoGoogle Scholar
Zeki, S. (2003). The disunity of consciousness. Trends in Cognitive Sciences, 7(5), 214–218. DOI logoGoogle Scholar
. (2007). The disunity of consciousness. Progress in Brain Research, 168, 11–18. DOI logoGoogle Scholar
Cited by (2)

Cited by two other publications

Boncompte, Gonzalo & Diego Cosmelli
2018. Neural Correlates of Conscious Motion Perception. Frontiers in Human Neuroscience 12 DOI logo
Gallotto, Stefano, Alexander T. Sack, Teresa Schuhmann & Tom A. de Graaf
2017. Oscillatory Correlates of Visual Consciousness. Frontiers in Psychology 8 DOI logo

This list is based on CrossRef data as of 24 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.