Part of
How the Brain Got Language – Towards a New Road Map
Edited by Michael A. Arbib
[Benjamins Current Topics 112] 2020
► pp. 318335
References (88)
References
Arbib, M. A. (2012). How the brain got language: The mirror system hypothesis (Vol. 16): OUP USA. DOI logoGoogle Scholar
(2016). Towards a computational comparative neuroprimatology: framing the language-ready brain. Physics of life reviews, 16, 1–54. DOI logoGoogle Scholar
(2017). Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. Journal of Neurolinguistics, 43, 228–253. DOI logoGoogle Scholar
Arnold, K., & Zuberbuhler, K. (2006). Language evolution: semantic combinations in primate calls. Nature, 441(7091), 303. DOI logoGoogle Scholar
Bahlmann, J., Schubotz, R. I., & Friederici, A. D. (2008). Hierarchical artificial grammar processing engages Broca’s area. NeuroImage, 42(2), 525–534. DOI logoGoogle Scholar
Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403(6767), 309–312. DOI logoGoogle Scholar
Bergman, T. J., Beehner, J. C., Cheney, D. L., & Seyfarth, R. M. (2003). Hierarchical classification by rank and kinship in baboons. Science, 302(5648), 1234–1236. DOI logoGoogle Scholar
Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17(2), 89–98. DOI logoGoogle Scholar
Bickerton, D., & Szathmary, E. (2009). Biological Foundations and Origin of Syntax. Cambridge, MA: MIT Press. DOI logoGoogle Scholar
Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews: Neuroscience, 11(11), 747–759. DOI logoGoogle Scholar
Bozic, M., Tyler, L. K., Ives, D. T., Randall, B., & Marslen-Wilson, W. D. (2010). Bihemispheric foundations for human speech comprehension. Proceedings of the National Academy of Sciences, USA, 107(40), 17439–17444. DOI logoGoogle Scholar
Brauer, J., Anwander, A., & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21(2), 459–466. DOI logoGoogle Scholar
Chakraborty, M., Walloe, S., Nedergaard, S., Fridel, E. E., Dabelsteen, T., Pakkenberg, B., Bertelsen, M. F., Dorrestein, G. M., Brauth, S. E., Durand, S. E., & Jarvis, E. D. (2015). Core and shell song systems unique to the parrot brain. PLoS One, 10(6), e011849601184. DOI logoGoogle Scholar
Conway, C. M., & Pisoni, D. B. (2008). Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Annals of the New York Academy of Sciences, 1145(1), 113–131. DOI logoGoogle Scholar
Cope, T. E., Wilson, B., Robson, H., Drinkall, R., Dean, L., Grube, M., Jones, P. S., Patterson, K., Griffiths, T. D., & Rowe, J. B. (2017). Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia, 104, 201–213. DOI logoGoogle Scholar
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158–164. DOI logoGoogle Scholar
Endress, A. D., Carden, S., Versace, E., & Hauser, M. D. (2010). The apes’ edge: positional learning in chimpanzees and humans. Animal Cognition, 13(3), 483–495. DOI logoGoogle Scholar
Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology, 22(21), 2059–2062. DOI logoGoogle Scholar
Fitch, W. T., & Friederici, A. (2012). Artificial grammar learning meets formal language theory: An overview. Philos Trans R Soc Lond B Biol Sci, 367, 1933–1955. DOI logoGoogle Scholar
Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377–380. DOI logoGoogle Scholar
Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91(4), 1357–1392. DOI logoGoogle Scholar
(2017). Evolution of the neural language network. Psychonomic bulletin & review, 24(1), 41–47. DOI logoGoogle Scholar
(2017). Language in our brain: The origins of a uniquely human capacity. MIT Press. DOI logoGoogle Scholar
Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proceedings of the National Academy of Sciences, USA, 103(7), 2458–2463. DOI logoGoogle Scholar
Fritz, J., Mishkin, M., & Saunders, R. C. (2005). In search of an auditory engram. Proc Natl Acad Sci U S A, 102(26), 9359–9364. DOI logoGoogle Scholar
Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945. DOI logoGoogle Scholar
Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517. DOI logoGoogle Scholar
Gómez, R. (2002). Variability and detection of invariant structure. Psychological Science, 13(5), 431–436. DOI logoGoogle Scholar
Grube, M., Bruffaerts, R., Schaeverbeke, J., Neyens, V., De Weer, A. -S., Seghers, A., Bergmans, B., Dries, E., Griffiths, T. D., & Vandenberghe, R. (2016). Core auditory processing deficits in primary progressive aphasia. Brain, aww067 DOI logoGoogle Scholar
Hage, S. R., & Nieder, A. (2013). Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nature Communications, 4, 2409. DOI logoGoogle Scholar
Hauser, M. D., & Glynn, D. (2009). Can Free-Ranging Rhesus Monkeys (Macaca mulatta) Extract Artificially Created Rules Comprised of Natural Vocalizations? Journal of Comparative Psychology, 123(2), 161–167. DOI logoGoogle Scholar
Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage, 108, 124–137. DOI logoGoogle Scholar
Heimbauer, L. A., Conway, C. M., Christiansen, M. H., Beran, M. J., & Owren, M. J. (2018). Visual artificial grammar learning by rhesus macaques (Macaca mulatta): exploring the role of grammar complexity and sequence length. Animal Cognition, 1–18.Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews: Neuroscience, 8(5), 393–402. DOI logoGoogle Scholar
Honda, E., & Okanoya, K. (1999). Acoustical and syntactical comparisons between songs of the white-backed Munia (Lonchura striata) and its domesticated strain, the Bengalese finch (Lonchura striata var. domestica). Zoological Science, 16, 319–326. DOI logoGoogle Scholar
Hsu, H. J., Tomblin, J. B., & Christiansen, M. H. (2014). Impaired statistical learning of non-adjacent dependencies in adolescents with specific language impairment. Frontiers in psychology, 5. DOI logoGoogle Scholar
Hurford, J. R. (2012). The Origins of Grammar: Language in the Light of Evolution II: Oxford University Press.Google Scholar
(2018). Mutation, modularity, merge, communication and selection. Current Opinion in Behavioral Sciences, 21, 76–79. DOI logoGoogle Scholar
Kikuchi, Y., Attaheri, A., Wilson, B., Rhone, A. E., Nourski, K. V., Gander, P. E., Kovach, C. K., Kawasaki, H., Griffiths, T. D., & Howard Iii, M. A. (2017). Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLoS Biology, 15(4), e2000219. DOI logoGoogle Scholar
Lam, N. H. L., Schoffelen, J. -M., Uddén, J., Hultén, A., & Hagoort, P. (2016). Neural activity during sentence processing as reflected in theta, alpha, beta, and gamma oscillations. NeuroImage, 142, 43–54. DOI logoGoogle Scholar
Locurto, C., Fox, M., & Mazzella, A. (2015). Implicit learning in cotton-top tamarins (Saguinus oedipus) and pigeons (Columba livia). Learning & Behavior, 43(2), 129–142. DOI logoGoogle Scholar
Lu, K., & Vicario, D. S. (2014). Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proceedings of the National Academy of Sciences, USA, 111(40), 14553–14558. DOI logoGoogle Scholar
Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2009). Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Sciences, USA, 106(20), 8362–8367. DOI logoGoogle Scholar
Mars, R. B., Eichert, N., Jbabdi, S., Verhagen, L., & Rushworth, M. F. S. (2018). Connectivity and the search for specializations in the language-capable brain. Current Opinion in Behavioral Sciences, 21, 19–26. DOI logoGoogle Scholar
Meyer, T., Ramachandran, R., & Olson, C. R. (2014). Statistical Learning of Serial Visual Transitions by Neurons in Monkey Inferotemporal Cortex. The Journal of neuroscience, 34(28), 9332–9337. DOI logoGoogle Scholar
Miller, C. T., Thomas, A. W., Nummela, S. U., & Lisa, A. (2015). Responses of primate frontal cortex neurons during natural vocal communication. Journal of Neurophysiology, 114(2), 1158–1171. DOI logoGoogle Scholar
Milne, A. E., Mueller, J. L., Männel, C., Attaheri, A., Friederici, A. D., & Petkov, C. I. (2016). Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Scientific Reports, 6. DOI logoGoogle Scholar
Milne, A. E., Petkov, C. I., & Wilson, B. (2017). Auditory and visual sequence learning in humans and monkeys using an artificial grammar learning paradigm. Neuroscience. DOI logoGoogle Scholar
Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J., & Rushworth, M. F. (2014). Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron, 81(3), 700–713. DOI logoGoogle Scholar
Newport, E. L., Hauser, M. D., Spaepen, G., & Aslin, R. N. (2004). Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cogn. Psychol., 49(2), 85–117. DOI logoGoogle Scholar
Patel, G. H., Yang, D., Jamerson, E. C., Snyder, L. H., Corbetta, M., & Ferrera, V. P. (2015). Functional evolution of new and expanded attention networks in humans. Proceedings of the National Academy of Sciences, 112(30), 9454–9459. DOI logoGoogle Scholar
Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Statistical Learning in a Natural Language by 8‐Month‐Old Infants. Child Development, 80(3), 674–685. DOI logoGoogle Scholar
Petersson, K. M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about the neurobiology of syntax. Brain and Language, 120(2), 83–95. DOI logoGoogle Scholar
Petkov, C., Kang, X., Alho, K., Bertrand, O., Yund, E., & Woods, D. (2004). Attentional modulation of human auditory cortex. Nature Neuroscience, 7(6), 658–663. DOI logoGoogle Scholar
Petkov, C. I., & Jarvis, E. D. (2012). Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4, 12. DOI logoGoogle Scholar
Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K. (2008). A voice region in the monkey brain. Nature Neuroscience, 11(3), 367–374. DOI logoGoogle Scholar
Ravignani, A., Sonnweber, R. -S., Stobbe, N., & Fitch, W. T. (2013). Action at a distance: dependency sensitivity in a New World primate. Biology Letters, 9(6), 20130852. DOI logoGoogle Scholar
Ravignani, A., & Sonnweber, R. (2017). Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74–79. DOI logoGoogle Scholar
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behaviour, 6(6), 855–863. DOI logoGoogle Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. DOI logoGoogle Scholar
Rinne, T., Muers, R. S., Salo, E., Slater, H., & Petkov, C. I. (2017). Functional imaging of audio–visual selective attention in monkeys and humans: How do lapses in monkey performance affect cross-species correspondences? Cerebral Cortex, 27(6), 3471–3484. DOI logoGoogle Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194. DOI logoGoogle Scholar
Saffran, J., Hauser, M. D., Seibel, R., Kapfhamer, J., Tsao, F., & Cushman, F. (2008). Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition, 107(2), 479–500. DOI logoGoogle Scholar
Saffran, J. R. (2002). Constraints on statistical language learning. Journal of Memory and Language, 47(1), 172–196. DOI logoGoogle Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928. DOI logoGoogle Scholar
Santolin, C., & Saffran, J. R. (2017). Constraints on Statistical Learning Across Species. Trends in Cognitive Sciences.Google Scholar
Schlenker, P., Chemla, E., & Zuberbühler, K. (2016). What Do Monkey Calls Mean? Trends in Cognitive Sciences, 20(12), 894–904. DOI logoGoogle Scholar
Schulze, K., Vargha-Khadem, F., & Mishkin, M. (2012). Test of a motor theory of long-term auditory memory. Proceedings of the National Academy of Sciences, 109(18), 7121–7125. DOI logoGoogle Scholar
Scott, B. H., Mishkin, M., & Yin, P. (2012). Monkeys have a limited form of short-term memory in audition. Proceedings of the National Academy of Sciences, 109(30), 12237–12241. DOI logoGoogle Scholar
Seyfarth, R. M., & Cheney, D. L. (2017). Precursors to language: Social cognition and pragmatic inference in primates. Psychonomic bulletin & review, 24(1), 79–84. DOI logoGoogle Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.): Oxford University Press.Google Scholar
Shima, K., Isoda, M., Mushiake, H., & Tanji, J. (2007). Categorization of behavioural sequences in the prefrontal cortex. Nature, 445(7125), 315. DOI logoGoogle Scholar
Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non-adjacent visual dependency learning in chimpanzees. Animal Cognition, 1–13.Google Scholar
Spierings, M. J., & ten Cate, C. (2016). Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proceedings of the National Academy of Sciences, USA, 113(27), E3977–E3984. DOI logoGoogle Scholar
Stobbe, N., Westphal-Fitch, G., Aust, U., & Fitch, W. T. (2012). Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia). Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1995–2006. DOI logoGoogle Scholar
Taglialatela, J. P., Russell, J. L., Schaeffer, J. A., & Hopkins, W. D. (2008). Communicative signaling activates ‘Broca’s’ homolog in chimpanzees. Current Biology, 18(5), 343–348. DOI logoGoogle Scholar
ten Cate, C. (2017). Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic bulletin & review, 24(1), 91–96. DOI logoGoogle Scholar
(2018). The comparative study of grammar learning mechanisms: birds as models. Current Opinion in Behavioral Sciences, 21, 13–18. DOI logoGoogle Scholar
Tu, H. -W., & Dooling, R. J. (2012). Perception of warble song in budgerigars (Melopsittacus undulatus): evidence for special processing. Animal Cognition, 15(6), 1151–1159. DOI logoGoogle Scholar
Van Essen, D. C., & Dierker, D. L. (2007). Surface-based and probabilistic atlases of primate cerebral cortex. Neuron, 56(2), 209–225. DOI logoGoogle Scholar
Vernaleo, B. A., & Dooling, R. J. (2011). Relative salience of envelope and fine structure cues in zebra finch song. The Journal of the Acoustical Society of America, 129(5), 3373–3383. DOI logoGoogle Scholar
Wang, L., Uhrig, L., Jarraya, B., & Dehaene, S. (2015). Representation of numerical and sequential patterns in macaque and human brains. Current Biology, 25(15), 1966–1974. DOI logoGoogle Scholar
Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., & Petkov, C. I. (2015a). Auditory sequence processing engages evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6(8901).Google Scholar
Wilson, B., Marslen-Wilson, W. D., & Petkov, C. I. (2017). Conserved sequence processing in primate frontal cortex. Trends in Neurosciences. DOI logoGoogle Scholar
Wilson, B., & Petkov, C. I. (2017). Relational knowledge and the origins of language. In R. Seyfarth, D. L. Cheney & M. L. Platt (Eds.), The social origins of language. Princeton and Oxford: Princeton University Press. DOI logoGoogle Scholar
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W. D., Smith, K., & Petkov, C. I. (2013). Auditory artificial grammar learning in macaque and marmoset monkeys. Journal of Neuroscience, 33(48), 18825–18835. DOI logoGoogle Scholar
Wilson, B., Smith, K., & Petkov, C. I. (2015b). Mixed-complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies. European Journal of Neuroscience, 41(5), 568–578. DOI logoGoogle Scholar
Zimmerer, V. C., Cowell, P. E., & Varley, R. A. (2014) Artificial grammar learning in individuals with severe aphasia. Neuropsychologia 53:25–38. DOI logoGoogle Scholar