Detecting inherent bias in lexical decision experiments with the LD1NN algorithm
A basic assumption of the lexical decision task is that a correct response to a word requires access to a corresponding mental representation of that word. However, systematic patterns of similarities and differences between words and nonwords can lead to an inherent bias for a particular response to a given stimulus. In this paper we introduce LD1NN, a simple algorithm based on one-nearest-neighbor classification that predicts the probability of a word response for each stimulus in an experiment by looking at the word/nonword probabilities of the most similar previously presented stimuli. Then, we apply LD1NN to the task of detecting differences between a set of words and different sets of matched nonwords. Finally, we show that the LD1NN word response probabilities are predictive of response times in three large lexical decision studies and that predicted biases for and against word responses corresponds with respectively faster and slower responses to words in the three studies.
Cited by (1)
Cited by one other publication
Mulder, Kimberley, Walter J. B. van Heuven & Ton Dijkstra
2018.
Revisiting the Neighborhood: How L2 Proficiency and Neighborhood Manipulation Affect Bilingual Processing.
Frontiers in Psychology 9
This list is based on CrossRef data as of 13 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.