Abbot-Smith, K. & Tomasello, M. (2006). Exemplar-learning and schematization in a usage-based account of syntactic acquisition. The Linguistic Review, 23(3), 275–290. DOI logoGoogle Scholar
Abney, S. P. (1991). Parsing by chunks. In R. C. Berwick, S. P. Abney, & C. Tenny (Eds.), Principle-based parsing: Computation and psycholinguistics (pp. 257–278). Springer. DOI logoGoogle Scholar
Adelman, J. S., Brown, G. D., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17(9), 814–823. DOI logoGoogle Scholar
Adger, D. (2003). Core syntax: A minimalist approach. Oxford University Press. DOI logoGoogle Scholar
Ajemian, R., D’Ausilio, A., Moorman, H., & Bizzi, E. (2010). Why professional athletes need a prolonged period of warm-up and other peculiarities of human motor learning. Journal of Motor Behavior, 42(6), 381–388. DOI logoGoogle Scholar
(2013). A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proceedings of the National Academy of Sciences of the United States of America, 110(52), E5078–E5087. DOI logoGoogle Scholar
Alexiadou, A., Agnastopoulou, E., & Everaert, M. (2004). The unaccusativity puzzle: Explorations of the syntax-lexicon interface. Oxford University Press. DOI logoGoogle Scholar
Alonqueo, P., & Soto, P. (2012). ¿Ser o estar? Desarrollo de la comprensión y efectos en la categorización [“Ser” or “Estar”? Development of its comprehension and categorisation effects]. Infancia y Aprendizaje, 35(3), 279–297. DOI logoGoogle Scholar
Ambridge, B., Kidd, E., Rowland, C. F., & Theakston, A. L. (2015). The ubiquity of frequency effects in first language acquisition. Journal of child language, 42(2), 239–273. DOI logoGoogle Scholar
Ambridge, B., Pine, J. M., & Lieven, E. V. M. (2014). Child language acquisition: Why universal grammar doesn’t help. Language, 90(3), e53–e90. DOI logoGoogle Scholar
Amso, D., Davidson, M. C., Johnson, S. P., Glover, G., & Casey, B. J. (2005). Contributions of the hippocampus and the striatum to simple association and frequency-based learning. NeuroImage, 27(2), 291–298. DOI logoGoogle Scholar
Anderson, B. (2007a). Pedagogical rules and their relationship to frequency in the input: Observational and empirical data from L2 French. Applied Linguistics, 28(2), 286–308. DOI logoGoogle Scholar
(2007b). Learnability and parametric change in the nominal system of L2 French. Language Acquisition, 14(2), 165–214. DOI logoGoogle Scholar
Arciuli, J. (2017). The multi-component nature of statistical learning. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 372(1711), Article 20160058. DOI logoGoogle Scholar
Arnon, I. (2021). The Starting Big approach to language learning. Journal of Child Language, 48(5), 937–958. DOI logoGoogle Scholar
Arnon, I., McCauley, S. M., & Christiansen, M. H. (2017). Digging up the building blocks of language: Age-of-acquisition effects for multiword phrases. Journal of Memory and Language, 92, 265–280. DOI logoGoogle Scholar
Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word phrases. Journal of Memory and Language, 62(1), 67–82. DOI logoGoogle Scholar
Aronoff, M. (1976). Word formation in generative grammar. The MIT Press.Google Scholar
Baayen, R. H. (2010). Demythologizing the word frequency effect: A discriminative learning perspective. The Mental Lexicon, 5(3), 436–461. DOI logoGoogle Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. DOI logoGoogle Scholar
Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language, 37(1), 94–117. DOI logoGoogle Scholar
Baggio, G., Choma, T., van Lambalgen, M., & Hagoort, P. (2010). Coercion and compositionality. Journal of Cognitive Neuroscience, 22(9), 2131–2140. DOI logoGoogle Scholar
Baggio, G., van Lambalgen, M., & Hagoort, P. (2008). Computing and recomputing discourse models: An ERP study. Journal of Memory and Language, 59(1), 36–53. DOI logoGoogle Scholar
Bakker, I., Macgregor, L. J., Pulvermüller, F., & Shtyrov, Y. (2013). Past tense in the brain’s time: Neurophysiological evidence for dual-route processing of past-tense verbs. NeuroImage, 71, 187–195. DOI logoGoogle Scholar
Bannard, C., & Lieven, E. (2009). Repetition and reuse in child language learning. In R. Corrigan, E. Moravcsik, H. Ouali, & K. Wheatley (Eds.), Formulaic language: Vol. 2, Acquisition, loss, psychological reality, functional explanations (pp. 299–321). John Benjamins. DOI logoGoogle Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. DOI logoGoogle Scholar
Batterink, L. J., Oudiette, D., Reber, P. J., & Paller, K. A. (2014). Sleep facilitates learning a new linguistic rule. Neuropsychologia, 65, 169–179. DOI logoGoogle Scholar
Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the neural bases of implicit and statistical learning. Topics in Cognitive Science, 11(3), 482–503. DOI logoGoogle Scholar
Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62–78. DOI logoGoogle Scholar
Batterink, L. J., Westerberg, C. E., & Paller, K. A. (2017). Vocabulary learning benefits from REM after slow-wave sleep. Neurobiology of Learning and Memory, 144, 102–113. DOI logoGoogle Scholar
Batterink, L. J., & Zhang, S. (2022). Simple statistical regularities presented during sleep are detected but not retained. Neuropsychologia, 164, Article 108106. DOI logoGoogle Scholar
Bauke, L., & Blümel, A. (Eds.). (2017). Labels and roots. De Gruyter Mouton. DOI logoGoogle Scholar
Bavelier, D., Green, C. S., & Dye, M. W. G. (2009). Exercising your brain: Training-related brain plasticity. In M. S. Gazzaniga, E. Bizzi, L. M. Chalupa, S. T. Grafton, T. F. Heatherton, C. Koch, J. E. LeDoux, S. J. Luck, G. R. Mangan, J. A. Movshon, H. Neville, E. A. Phelps, P. Rakic, D. L. Schacter, M. Sur, & B. A. Wandell (Eds.), The Cognitive Neurosciences (pp. 153–164). The MIT Press. DOI logoGoogle Scholar
Becerra-Bonache, L., Bel-Enguix, G., Jiménez-López, M. D., & Martín-Vide, C. (2014). Mathematical foundations: Formal grammars and languages. In R. Mitkov (Ed.), The Oxford handbook of computational linguistics (2nd ed., pp. 207–229). Oxford University Press. DOI logoGoogle Scholar
Beckers, T., De Houwer, J., & Matute, H. (2007). Editorial: Human contingency learning. The Quarterly Journal of Experimental Psychology, 60(3), 289–290. DOI logoGoogle Scholar
Benítez-Burraco, A., & Boeckx, C. (2014). Universal grammar and biological variation: An EvoDevo agenda for comparative biolinguistics. Biological Theory, 9(2), 122–134. DOI logoGoogle Scholar
Bennett, M., & Partee, B. H. (2004). Toward the logic of tense and aspect in English. In B. H. Partee (Ed.), Compositionality in formal semantics (pp. 59–109). Blackwell. DOI logoGoogle Scholar
Bentley, D. (2006). Split intransitivity in Italian. De Gruyter Mouton. DOI logoGoogle Scholar
Berwick, R. C. (1997). Syntax facit saltum: Computation and the genotype and phenotype of language. Journal of Neurolinguistics, 10(2–3), 231–249. DOI logoGoogle Scholar
(2011). Syntax facit saltum redux: Biolinguistics and the leap to syntax. In A. M. Di Sciullo, & C. Boeckx (Eds.), The biolinguistic enterprise: New perspectives on the evolution and nature of the human language faculty (pp. 65–99). Oxford University Press.Google Scholar
Berwick, R. C., & Chomsky, N. (2017). Why only us: Language and evolution. The MIT Press.Google Scholar
Bever, T. G., & Poeppel, D. (2010). Analysis by synthesis: A (re-)emerging program of research for language and vision. Biolinguistics, 4(2–3), 174–200. DOI logoGoogle Scholar
Biberauer, T., Holmberg, A., & Roberts, I. (2009). Linearization and the architecture of grammar: A view from the Final-over-Final constraint. In V. Moscati, & E. Servidio (Eds.), Proceedings XXXV Incontro di Grammatica Generativa, CICL working papers (pp. 77–89). Universit`a degli Studi di SienaGoogle Scholar
Bickerton, D. (2003). Symbol and structure: A comprehensive framework for language evolution. In M. H. Christiansen & S. Kirby, (Eds.), Language evolution (pp. 77–93). Oxford University Press. DOI logoGoogle Scholar
(2009a). Recursion: Core of complexity or artifact of analysis? In T. Givón & M. Shibatani (Eds.), Syntactic complexity: Diachrony, acquisition, neuro-cognition, evolution (pp. 531–544). John Benjamins. DOI logoGoogle Scholar
(2009b). Syntax for non-syntacticians. A brief primer. In D. Bickerton & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 3–13). The MIT Press. DOI logoGoogle Scholar
Bizzi, E., & Ajemian, R. (2015). A hard scientific quest: Understanding voluntary movements. Daedalus, 144(1), 83–95. DOI logoGoogle Scholar
Bley-Vroman, R. (1983). The comparative fallacy in interlanguage studies: The case of systematicity. Language Learning, 33(1), 1–17. DOI logoGoogle Scholar
(2002). Frequency in production, comprehension and acquisition. Studies in Second Language Acquisition, 24(2), 209–213. DOI logoGoogle Scholar
(2009). The evolving context of the fundamental difference hypothesis. Studies in Second Language Acquisition, 31(2), 175–198. DOI logoGoogle Scholar
Blumenthal-Dramé, A. (2017). Entrenchment from a psycholinguistic and neurolinguistic perspective. In H.-J. Schmid (Ed.), Entrenchment and the psychology of language learning: How we reorganize and adapt linguistic knowledge (pp. 129–152). De Gruyter Mouton. DOI logoGoogle Scholar
Bod, R. (2009). From exemplar to grammar: A probabilistic analogy-based model of language learning. Cognitive Science, 33(5), 752–793. DOI logoGoogle Scholar
Boeckx, C. (2008). Bare syntax. Oxford University Press.Google Scholar
Boeckx, C., Fodor, J. D., Gleitman, L., & Rizzi, L. (2009). Language universals: Yesterday, today and tomorrow. In M. Piattelli-Palmarini, J. Uriagereka, & P. Salaburu (Eds.). Of minds and language: A dialogue with Noam Chomsky in the Basque Country (pp. 194–220). Oxford University Press. DOI logoGoogle Scholar
Boeckx, C., & Theofanopoulou, C. (2018). (Neural) syntax. In R. Martin, & A. Gallego (Eds), Language, syntax, and the natural sciences (pp. 295–315). Cambridge University Press. DOI logoGoogle Scholar
Bogaerts, L., Siegelman, N., & Frost, R. (2021). Statistical learning and language impairments: Toward more precise theoretical accounts. Perspectives on Psychological Science, 16(2), 319–337. DOI logoGoogle Scholar
Borer, H., & Wexler, K. (1992). Bi-unique relations and the maturation of grammatical principles. Natural Language & Linguistic Theory, 10(2), 147–189. DOI logoGoogle Scholar
Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2019). Toward a neurobiologically plausible model of language-related, negative event-related potentials. Frontiers in Psychology, 10, Article 298. DOI logoGoogle Scholar
Bovolenta, G., & Husband, E. M. (2023). Structural prediction during language comprehension revealed by electrophysiology: Evidence from Italian auxiliaries. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(1), 116–129. DOI logoGoogle Scholar
Boxell, O. (2016). The place of universal grammar in the study of language and mind: A response to Dabrowska (2015). Open Linguistics, 2(1), 352–372. DOI logoGoogle Scholar
Brauer, J., Anwander, A., & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21(2), 459–466. DOI logoGoogle Scholar
Bresnan, J. (2007). Is syntactic knowledge probabilistic? Experiments with the English dative alternation. In S. Featherston & W. Sternefeld (Eds.), Roots: Linguistics in search of its evidential base (pp. 75–96). De Gruyter Mouton. DOI logoGoogle Scholar
Bresnan, J., & Ford, M. (2010). Predicting syntax: Processing dative constructions in American and Australian varieties of English. Language, 86(1), 168–213. DOI logoGoogle Scholar
Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. J. (2017). A neurocomputational model of the N400 and the P600 in language processing. Cognitive Science, 41(56), 1318–1352. DOI logoGoogle Scholar
Buffington, J., Demos, A., & Morgan-Short, K. (2021). The reliability and validity of procedural memory assessments used in second language acquisition research. Studies in Second Language Acquisition, 43(3), 635–662. DOI logoGoogle Scholar
Busemeyer, J. R., & Wang, Z. (2015). What is quantum cognition, and how is it applied to psychology? Current Directions in Psychological Science, 24(3), 163–169. DOI logoGoogle Scholar
Bybee, J. (1995). Regular morphology and the lexicon. Language and Cognitive Processes, 10(5), 425–455. DOI logoGoogle Scholar
(2002). Sequentiality as the basis of constituent structure. In T. Givón & B. F. Malle (Eds.), The evolution of language out of pre-language (pp. 107–134). John Benjamins. DOI logoGoogle Scholar
(2006). From usage to grammar: The mind’s response to repetition. Language, 82(4), 711–733. DOI logoGoogle Scholar
(2007). Frequency of use and the organization of language. Oxford University Press. DOI logoGoogle Scholar
(2008). Usage-based grammar and second language acquisition. In P. Robinson & N. Ellis (Eds.), Handbook of cognitive linguistics and second language acquisition (pp. 226–246). Routledge.Google Scholar
(2010). Language, usage and cognition. Cambridge University Press. DOI logoGoogle Scholar
(2011). Domain-general processes as the basis for grammar. In K. R. Gibson & M. Tallerman (Eds.), The Oxford handbook of language evolution (pp. 528–536). Oxford University Press. DOI logoGoogle Scholar
Cardinaletti, A., & Giusti, G. (2011). The acquisition of adjectival ordering in Italian. In M. Anderssen, K. Bentzen, & M. Westergaard (Eds.), Variation in the input (pp. 65–93). Springer. DOI logoGoogle Scholar
Carminati, M. N. (2002). The processing of Italian subject pronouns. Doctoral dissertations, University of Massachusetts at Amherst. [URL]
Carnie, A. (2002). Syntax: A generative introduction. Blackwell.Google Scholar
Carreiras, M., & Clifton, C. (Eds.) (2004). The on-line study of sentence comprehension: Eye-tracking, ERPs and beyond. Psychology Press. DOI logoGoogle Scholar
Carroll, S. E. (2006). Shallow processing: A consequence of bilingualism or second language learning? Applied Psycholinguistics, 27(1), 53–56. DOI logoGoogle Scholar
Cattaneo, Z., Devlin, J. T., Vecchi, T., & Silvanto, J. (2009). Dissociable neural representations of grammatical gender in Broca’s area investigated by the combination of satiation and TMS. NeuroImage, 47(2), 700–704. DOI logoGoogle Scholar
Cecchetto, C., & Donati, C. (2010). On labeling: Principle C and head movement. Syntax, 13(3), 241–278. DOI logoGoogle Scholar
Chater, N., & Christiansen, M. H. (2010). Language acquisition meets language evolution. Cognitive Science, 34(7), 1131–1157. DOI logoGoogle Scholar
Cheng, L. S., Burgess, D., Vernooij, N., Solís-Barroso, C., McDermott, A., & Namboodiripad, S. (2021). The problematic concept of native speaker in psycholinguistics: Replacing vague and harmful terminology with inclusive and accurate measures. Frontiers in Psychology, 12, Article 715843. DOI logoGoogle Scholar
Chomsky, N. (1995). The minimalist program. The MIT Press.Google Scholar
(2000a). The architecture of language. Oxford University Press.Google Scholar
(2000b). New horizons in the study of language and mind. Cambridge University Press. DOI logoGoogle Scholar
(2002). On nature and language. Cambridge University Press. DOI logoGoogle Scholar
(2005). Three factors in language design. Linguistic Inquiry, 36(1), 1–22. DOI logoGoogle Scholar
(2007). Approaching UG from below. In U. Sauerland & H. M. Gärtner (Eds.), Interfaces + recursion = language? Chomsky’s minimalism and the view from syntax-semantics (pp. 1–30). De Gruyter Mouton. DOI logoGoogle Scholar
(2009). Opening remarks. In M. Piattelli-Palmarini, J. Uriagereka, & P. Salaburu (Eds.). Of minds and language: A dialogue with Noam Chomsky in the Basque Country (pp. 13–43). Oxford University Press. DOI logoGoogle Scholar
(2011). Language and the cognitive science revolution(s). Lecture given at Carlton University, April 8, 2011 [Video]. YouTube. [URL]
(2012). The science of language: Interviews with James McGilvray. Cambridge University Press. DOI logoGoogle Scholar
(2013). Problems of projection. Lingua, 130, 33–49. DOI logoGoogle Scholar
(2015a). Problems of projections: Extensions. In E. Di Domenico, C. Hamann, & S. Matteini (Eds.), Structures, strategies and beyond: Studies in honour of Adriana Belletti (pp. 1–16). John Benjamins. DOI logoGoogle Scholar
(2015b). Some core contested concepts. Journal of Psycholinguistic Research, 44(1), 91–104. DOI logoGoogle Scholar
(2015c). The minimalist program: 20th anniversary edition. The MIT Press. DOI logoGoogle Scholar
(2016). Minimal computation and the architecture of language. Chinese Semiotic Studies, 12(1), 13–24. DOI logoGoogle Scholar
(2017). Language architecture and its import for evolution. Neuroscience and Biobehavioral Reviews, 81(Pt B), 295–300. DOI logoGoogle Scholar
Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and Cognitive Processes, 27(2), 231–256. DOI logoGoogle Scholar
Cinque, G. (1994). On the evidence for partial N-movement in the romance DP. In G. Cinque, J. Koster, J.-Y. Pollock, L. Rizzi, & R. Zanuttini, (Eds.), Paths towards universal grammar: Studies in honor of Richard S. Kayne (pp. 85–110). Georgetown University Press.Google Scholar
(2010). The syntax of adjectives: A comparative study. The MIT Press. DOI logoGoogle Scholar
Citko, B. (2011). Symmetry in syntax: Merge, move and labels. Cambridge University Press. DOI logoGoogle Scholar
Clahsen, H., & Felser, C. (2006a). How native-like is non-native language processing? Trends in Cognitive Sciences, 10(12), 564–570. DOI logoGoogle Scholar
(2006b). Grammatical processing in language learners. Applied Psycholinguistics, 27(1), 3–42. DOI logoGoogle Scholar
(2006c). Authors’ response: Continuity and shallow structures in language processing. Applied Psycholinguistics, 27(1), 107–126. DOI logoGoogle Scholar
(2018). Some notes on the Shallow Structure Hypothesis. Studies in Second Language Acquisition, 40(3), 693–706. DOI logoGoogle Scholar
Clahsen, H., Felser, C., Neubauer, K., Sato, M., & Silva, R. (2010). Morphological structure in native and nonnative language processing. Language Learning, 60(1), 21–43. DOI logoGoogle Scholar
Clair, M. C. S., Monaghan, P., & Christiansen, M. H. (2010). Learning grammatical categories from distributional cues: Flexible frames for language acquisition. Cognition, 116(3), 341–360. DOI logoGoogle Scholar
Clark, A. (2013). Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver. The Behavioral and Brain Sciences, 36(3), 233–253. DOI logoGoogle Scholar
Clear, J. (1993). From Firth principles: Computational tools for the study of collocations. In M. Baker, G. Francis, & E. Tognini-Bonelli (Eds.), Text and technology: In honour of John Sinclair (pp. 271–292). John Benjamins. DOI logoGoogle Scholar
Clifton Jr., C., Staub, A., & Rayner, K. (2007). Eye movements in reading words and sentences. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye movements: A window on mind and brain (pp. 341–371). Elsevier. DOI logoGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108(1), 204–256. DOI logoGoogle Scholar
Compton, B. J., & Logan, G. D. (1991). The transition from algorithm to retrieval in memory-based theories of automaticity. Memory & cognition, 19(2), 151–158. DOI logoGoogle Scholar
Conklin, K., & Pellicer-Sánchez, A. (2016). Using eye-tracking in applied linguistics and second language research. Second Language Research, 32(3), 453–468. DOI logoGoogle Scholar
Cruschina, S. (2015). The expression of evidentiality and epistemicity: Cases of grammaticalization in Italian and Sicilian. Probus, 27(1), 1–31. DOI logoGoogle Scholar
Cruz Heredia, A. A. L., Dickerson, B., & Lau, E. (2022). Towards understanding sustained neural activity across syntactic dependencies. Neurobiology of Language, 3(1), 87–108. DOI logoGoogle Scholar
Cunnings, I. (2017). Parsing and working memory in bilingual sentence processing. Bilingualism: Language and Cognition, 20(4), 659–678. DOI logoGoogle Scholar
Dąbrowska, E., & Lieven, E. (2005). Towards a lexically specific grammar of children’s question constructions. Cognitive Linguistics, 16(3), 437–474. DOI logoGoogle Scholar
De Bot, K., Lowie, W., & Verspoor, M. (2007). A Dynamic Systems Theory approach to second language acquisition. Bilingualism: Language and Cognition, 10(1), 7–21. DOI logoGoogle Scholar
De Diego-Balaguer, R., Fuentemilla, L., & Rodriguez-Fornells, A. (2011). Brain dynamics sustaining rapid rule extraction from speech. Journal of Cognitive Neuroscience, 23(10), 3105–3120. DOI logoGoogle Scholar
De Diego-Balaguer, R., & Lopez-Barroso, D. (2010). Cognitive and neural mechanisms sustaining rule learning from speech. Language Learning, 60, 151–187. DOI logoGoogle Scholar
Dehaene, S. (2009). Reading in the brain: The new science of how we read. Penguin Books.Google Scholar
Dehé, N., & Samek-Lodovici, V. (2009). On the prosody and syntax of DPs: evidence from Italian noun adjective sequences. Natural Language & Linguistic Theory, 27, 45–75. DOI logoGoogle Scholar
DeKeyser, R. M. (2000). The robustness of critical period effects in second language acquisition. Studies in Second Language Acquisition, 22(4), 499–533. DOI logoGoogle Scholar
DeKeyser, R. (2007). Skill Acquisition Theory. In B. VanPatten & J. Williams (Eds.), Theories in second language acquisition: An introduction (pp. 97–113). Lawrence Erlbaum Associates.Google Scholar
(2009). Cognitive-psychological processes in second language learning. In C. Doughty & M. Long (Eds.) The handbook of language teaching (pp. 119–137). Blackwell. DOI logoGoogle Scholar
Dekydspotter, L. (2009). Second language epistemology: Take two. Studies in Second Language Acquisition, 31(2), 291–321. DOI logoGoogle Scholar
DeLong, K. A., Troyer, M., & Kutas, M. (2014). Pre-processing in sentence comprehension: Sensitivity to likely upcoming meaning and structure. Language and Linguistics Compass, 8(12), 631–645. DOI logoGoogle Scholar
DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117–1121. DOI logoGoogle Scholar
De Martino, M., Bracco, G., & Laudanna, A. (2011). The activation of grammatical gender information in processing Italian nouns. Language and Cognitive Processes, 26(4–6), 745–776. DOI logoGoogle Scholar
De Martino, M., Bracco, G., Postiglione, F., & Laudanna, A. (2017). The influence of grammatical gender and suffix transparency in processing Italian written nouns. The Mental Lexicon, 12(1), 107–128. DOI logoGoogle Scholar
De Saussure, F. (1922). Course de linguistique générale (F. Sechehaye, Trans.). Editions Payot.Google Scholar
De Swart, H. (1998). Aspect shift and coercion. Natural Language & Linguistic Theory, 16, 347–385. DOI logoGoogle Scholar
Dimroth, C., & Starren, M. (Eds.). (2003). Information structure and the dynamics of language acquisition. John Benjamins. DOI logoGoogle Scholar
Divjak, D. (2019). Frequency in language: Memory, attention and learning. Cambridge University Press. DOI logoGoogle Scholar
Doumas, L. A., Hummel, J. E., & Sandhofer, C. M. (2008). A theory of the discovery and predication of relational concepts. Psychological Review, 115(1), 1–43. DOI logoGoogle Scholar
Drozd, K. F. (2001). Children’s weak interpretations of universally quantified questions. In M. Bowerman & S. Levinson (Eds.), Conceptual development and language acquisition (pp. 340–376). Cambridge University Press. DOI logoGoogle Scholar
Dulay, H., Burt, M., & Krashen, S. (1982). Language two. Oxford University Press.Google Scholar
Dussias, P. E. (2003). Syntactic ambiguity resolution in L2 learners: Some effects of bilinguality on LI and L2 processing strategies. Studies in Second Language Acquisition, 25(4), 529–557. DOI logoGoogle Scholar
Eichenbaum, H. (2012). The cognitive neuroscience of memory: An introduction (2nd ed.). Oxford University Press. DOI logoGoogle Scholar
Ellis, N. C. (2001). Memory for language. In P. Robinson (Ed.), Cognition and second language instruction (pp. 33–68). Cambridge University Press. DOI logoGoogle Scholar
(2002). Frequency effects in language processing: A review with implications for theories of implicit and explicit language acquisition. Studies in Second Language Acquisition, 24(2), 143–188. DOI logoGoogle Scholar
(2012). Formulaic language and second language acquisition: Zipf and the phrasal teddy bear. Annual Review of Applied Linguistics, 32, 17–44. DOI logoGoogle Scholar
(2016). Cognition, corpora, and computing: Triangulating research in usage-based language learning. Language Learning, 67(51), 40–65. DOI logoGoogle Scholar
Ellis, N. C., & Cadierno, T. (2009). Constructing a second language: Introduction to the special section. Annual Review of Cognitive Linguistics, 7(1), 111–139. DOI logoGoogle Scholar
Ellis, N. C., & Collins, L. (2009). Input and second language acquisition: The roles of frequency, form, and function introduction to the special issue. The Modern Language Journal, 93(3), 329–335. DOI logoGoogle Scholar
Ellis, N. C., & Ogden, D. C. (2017). Thinking about multiword constructions: Usage-based approaches to acquisition and processing. Topics in Cognitive Science, 9(3), 604–620. DOI logoGoogle Scholar
Ellis, N. C., & Wulff, S. (2020). Usage-based approaches to L2 acquisition. In B. VanPatten, G. Keating, & S. Wulff (Eds.), Theories in second language acquisition: An introduction, (pp. 63–82). Routledge. DOI logoGoogle Scholar
Epstein, S., Kitahara, H., & Seely, T. (2017). Merge, labeling and their interactions. In L. Bauke & A. Blümel (Eds.), Labels and roots (pp. 17–46). De Gruyter Mouton. DOI logoGoogle Scholar
Fernández-Leborans, M. J. (1999). La predicación: Las oraciones copulativas. In V. Demonte Barreto & I. Bosque (Eds.), Gramática descriptiva de la lengua española (Vol. 2, pp. 2357–2460). Espasa Calpe.Google Scholar
Ferreira, F. (2003). The misinterpretation of noncanonical sentences. Cognitive Psychology, 47(2), 164–203. DOI logoGoogle Scholar
Ferreira, F., Bailey, K. G. D., & Ferraro, V. (2002). Good-enough representations in language comprehension. Current Directions in Psychological Science, 11(1), 11–15. DOI logoGoogle Scholar
Ferreira, F., & Patson, N. D. (2007). The ‘good enough’ approach to language comprehension. Language and Linguistics Compass, 1(1-2), 71–83. DOI logoGoogle Scholar
Ferreira, F., & Qiu, Z. (2021). Predicting syntactic structure. Brain Research, 1770, Article 147632. DOI logoGoogle Scholar
Fisher, C., Gertner, Y., Scott, R. M., & Yuan, S. (2010). Syntactic bootstrapping. WIREs Cognitive Science, 1(2), 143–149. DOI logoGoogle Scholar
Fodor, J. D. (1989). Empty categories in sentence processing. Language and Cognitive Processes, 4(3–4), SI155–SI209. DOI logoGoogle Scholar
Fodor, J. D., & Inoue, A. (2010). Attach anyway. In J. D. Fodor & F. Ferreira (Eds.), Reanalysis in sentence processing (pp. 101–141). Kluwer.Google Scholar
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1–2), 3–71. DOI logoGoogle Scholar
Frank, M. C., & Tenenbaum, J. B. (2011). Three ideal observer models for rule learning in simple languages. Cognition, 120(3), 360–371. DOI logoGoogle Scholar
Franzon, F., & Zanini, C. (2023). The entropy of morphological systems in natural languages is modulated by functional and semantic properties. Journal of Quantitative Linguistics, 30(1), 42–66. DOI logoGoogle Scholar
Frazier, L. (1999). On sentence interpretation. Springer. DOI logoGoogle Scholar
Frenck-Mestre, C. (2002). An on-line look at sentence processing in the second language. In R. R. Heredia & J. Altarriba (Eds.), Bilingual sentence processing (pp. 217–236). Elsevier. DOI logoGoogle Scholar
(2005). Eye-movement recording as a tool for studying syntactic processing in a second language: A review of methodologies and experimental findings. Second Language Research, 21(2), 175–198. DOI logoGoogle Scholar
Friederici, A. D., Brauer, J., & Lohmann, G. (2011). Maturation of the language network: from inter- to intrahemispheric connectivities. PloS one, 6(6), Article e20726. DOI logoGoogle Scholar
Friederici, A. D., Oberecker, R., & Brauer, J. (2012). Neurophysiological preconditions of syntax acquisition. Psychological Research, 76(2), 204–211. DOI logoGoogle Scholar
Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 1019–1021. DOI logoGoogle Scholar
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. DOI logoGoogle Scholar
Gallego, A.J. & Martin, R. (2018). Language, Syntax, and the Natural Sciences. Cambridge, Cambridge University Press.Google Scholar
Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research: JSLHR, 58(3), 934–945. DOI logoGoogle Scholar
García-Pardo, A., & Menon, M. (2020). The aspectual structure of the adjective: Spanish ser and estar. In A. Morales-Front, M. J. Ferreira, R. P. Leow, & C. Sanz (Eds.), Hispanic linguistics: Current issues and new directions (pp. 138–159). John Benjamins. DOI logoGoogle Scholar
Geeraerts, D., & Cuyckens, H. (2012). Introducing cognitive linguistics. In D. Geeraerts, H. Cuyckens (Eds.), The Oxford handbook of cognitive linguistics (pp. 3–22). Oxford University Press.Google Scholar
Giacalone-Ramat, A. (1998). Testing the boundaries of grammaticalization. In A. Giacalone-Ramat & P. J. Hopper (Eds.), The limits of grammaticalization (pp. 107–128). John Benjamins. DOI logoGoogle Scholar
(2000). On some grammaticalization patterns for auxiliaries. In J. C. Smith & D. Bentley (Eds.), Historical linguistics 1995: Vol. 1, General issues and non-Germanic Languages (pp. 125–154). John Benjamins. DOI logoGoogle Scholar
Giacalone Ramat, A. (Ed.) (2003). Verso l’italiano: Percorsi e strategie di acquisizione. Carocci.Google Scholar
Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117(3), 227–247. DOI logoGoogle Scholar
Goldberg, A. E. (2006). Constructions at work: The nature of generalization in language. Oxford University Press.Google Scholar
Goldberg, A. (2008). Universal Grammar? Or prerequisites for natural language? Behavioral and Brain Sciences, 31(5), 522–523. DOI logoGoogle Scholar
Goldstein, M. H., Waterfall, H. R., Lotem, A., Halpern, J. Y., Schwade, J. A., Onnis, L., & Edelman, S. (2010). General cognitive principles for learning structure in time and space. Trends in Cognitive Sciences, 14(6), 249–258. DOI logoGoogle Scholar
Gómez, R. (2007). Statistical learning in infant language development. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics, pp. 601–616. Oxford University Press. DOI logoGoogle Scholar
Granena, G., & Long, M. (Eds.) (2013a). Sensitive periods, language aptitude, and ultimate L2 attainment. John Benjamins. DOI logoGoogle Scholar
Granena, G., & Long, M. H. (2013b). Age of onset, length of residence, language aptitude, and ultimate L2 attainment in three linguistic domains. Second Language Research, 29(3), 311–343. DOI logoGoogle Scholar
Gries, S. T. (2008). Dispersions and adjusted frequencies in corpora. International Journal of Corpus Linguistics, 13(4), 403–437. DOI logoGoogle Scholar
(2015). Statistics for learner corpus research. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge handbook of learner corpus research (pp. 159–182). Cambridge University Press. DOI logoGoogle Scholar
(2018). Mechanistic formal approaches to language acquisition: Yes, but at the right level(s) of resolution. Linguistic Approaches to Bilingualism, 8(6), 733–737. DOI logoGoogle Scholar
(2022). On, or against?, (just) frequency. In H. Boas (Ed.), Directions for pedagogical construction grammar: Learning and teaching (with) constructions (pp. 47–72). De Gruyter Mouton. DOI logoGoogle Scholar
Gries, S. T., & Ellis, N. C. (2015). Statistical measures for usage-based linguistics. Language Learning, 65(S1), 228–255. DOI logoGoogle Scholar
Hagiwara, H., Soshi, T., Ishihara, M., & Imanaka, K. (2007). A topographical study on the event-related potential correlates of scrambled word order in Japanese complex sentences. Journal of Cognitive Neuroscience, 19(2), 175–193. DOI logoGoogle Scholar
Hall, T. (2010). L2 learner-made formulaic expressions and constructions. Columbia University Working Papers in TESOL and Applied Linguistics, 10(2), 1–18. DOI logoGoogle Scholar
Hamrick, P. (2015). Declarative and procedural memory abilities as individual differences in incidental language learning. Learning and Individual Differences, 44, 9–15. DOI logoGoogle Scholar
Han, Z., & Tarone, E. (Eds.) (2014). Interlanguage: Forty years later. John Benjamins. DOI logoGoogle Scholar
Hare, M., & Elman, J. L. (1993). From weared to wore: A connectionist account of language change. Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, 528–533. Lawrence Erlbaum Associates.Google Scholar
Haselow, A., & Kaltenböck, G. (Eds.) (2020). Grammar and cognition: Dualistic models of language structure and language processing. John Benjamins. DOI logoGoogle Scholar
Haspelmath, M. (2021). Explaining grammatical coding asymmetries: Form–frequency correspondences and predictability. Journal of Linguistics, 57(3), 605–633. DOI logoGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer. DOI logoGoogle Scholar
Hauptmann, B., & Karni, A. (2002). From primed to learn: The saturation of repetition priming and the induction of long-term memory. Cognitive Brain Research, 13(3), 313–322. DOI logoGoogle Scholar
Hauser, M. D., Yang, C., Berwick, R. C., Tattersall, I., Ryan, M. J., Watumull, J., Chomsky, N., & Lewontin, R. C. (2014). The mystery of language evolution. Frontiers in Psychology, 5, Article 401. DOI logoGoogle Scholar
Hawkins, J. A. (2003). Efficiency and complexity in grammars: Three general principles. In J. Moore & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 121–152). CSLI Publications.Google Scholar
(2004). Efficiency and complexity in grammars. Oxford University Press. DOI logoGoogle Scholar
(2022). Have grammars been shaped by working memory and if so, how? In J. Schwieter & Z. Wen (Eds.), The Cambridge handbook of working memory and language (pp. 275–303). Cambridge University Press. DOI logoGoogle Scholar
Hawkins, R. (2001). Second language syntax: A generative introduction. Blackwell.Google Scholar
Heine, B., Kaltenböck, G., Kuteva, T., & Long, H. (2013). An outline of discourse grammar. In S. Bischoff & C. Jany (Eds.), Functional approaches to language (pp. 155–206). De Gruyter Mouton. DOI logoGoogle Scholar
Heine, B., Kuteva, T., & Kaltenböck, G. (2014). Discourse Grammar, the dual process model, and brain lateralization: Some correlations. Language and Cognition: An Interdisciplinary Journal of Language and Cognitive Science, 6(1), 146–180. DOI logoGoogle Scholar
Hendriks, H. (2003). How to acquire anaphoric linkage in European languages: a look at evidence from Chinese learner data. In E. Banfi (Ed.), Italiano di cinesi: Percorsi acquisizionali (pp. 57–66). Franco Angeli.Google Scholar
Hilpert, M., & Diessel, H. (2017). Entrenchment in construction grammar. In H.-J. Schmid (Ed.), Entrenchment and the psychology of language learning: How we reorganize and adapt linguistic knowledge (pp. 57–74). De Gruyter Mouton. DOI logoGoogle Scholar
Hjelmslev, L. (1938). Essai d’une théorie des morphèmes. In Actes du IV Congrès International des Linguistes (pp. 140–151). Munksgaard.Google Scholar
Hohwy, J. (2013). The predictive mind. Oxford University Press. DOI logoGoogle Scholar
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–937. DOI logoGoogle Scholar
Hommel, B., & Prinz, W. (Eds.). (1996). Theoretical issues in stimulus-response compatibility. North-Holland.Google Scholar
Hornstein, N. (2009). A theory of syntax: Minimal operations and universal grammar. Cambridge University Press. DOI logoGoogle Scholar
Hornstein, N., & Pietroski, P. (2009). Basic operations: Minimal syntax-semantics. Catalan Journal of Linguistics, 8, 113–139. [URL]. DOI logo
Hulme, C., & Snowling, M. J. (2013). Learning to read: What we know and what we need to understand better. Child Development Perspectives, 7(1), 1–5. DOI logoGoogle Scholar
Hulstijn, J. H. (2002). What does the impact of frequency tell us about the language acquisition device? Studies in Second Language Acquisition, 24(2), 269–273. DOI logoGoogle Scholar
Hummel, J. E. (2010). Symbolic versus associative learning. Cognitive science, 34(6), 958–965. DOI logoGoogle Scholar
Irwin, D. E. (2004). Fixation location and fixation duration as indices of cognitive processing. In J. M. Henderson & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 105–133). Psychology Press.Google Scholar
Jackendoff, R. (1997). The architecture of the language faculty. The MIT Press.Google Scholar
(2002a). Foundations of language: Brain, meaning, grammar, evolution. Oxford University Press. DOI logoGoogle Scholar
(2002b). What’s in the lexicon? In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 23–58). Kluwer. DOI logoGoogle Scholar
Jackendoff, R., & Audring, J. (2020). Relational morphology: A cousin of construction grammar. Frontiers in Psychology, 11, Article 2241. DOI logoGoogle Scholar
Jackendoff, R., & Pinker, S. (2005). The nature of the language faculty and its implications for evolution of language (reply to Fitch, Hauser, and Chomsky). Cognition, 97(2), 211–225. DOI logoGoogle Scholar
Jaén, M. M. (2007). A corpus-driven design of a test for assessing the ESL collocational competence of university students. International Journal of English Studies, 7(2), 127–147.Google Scholar
Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlý, P., & Suchomel, V. (2013, July). The TenTen corpus family. 7th International Corpus Linguistics Conference CL, 125–127.Google Scholar
Jared, D. (1997). Spelling-sound consistency affects the naming of high-frequency words. Journal of Memory and Language, 36(4), 505–529. DOI logoGoogle Scholar
Joanisse, M. F., & Seidenberg, M. S. (1999). Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7592–7597. DOI logoGoogle Scholar
Jordens, P. (1997). Introducing the Basic Variety. Second Language Research, 13(4), 289–300. DOI logoGoogle Scholar
Juffs, A. (2005). The influence of first language on the processing of wh-movement in English as a second language. Second Language Research, 21(2), 121–151. DOI logoGoogle Scholar
Juliano, C., & Tanenhaus, M. K. (1994). A constraint-based lexicalist account of the subject/object attachment preference. Journal of Psycholinguistic Research, 23(6), 459–471. DOI logoGoogle Scholar
Kafri, R., Springer, M., & Pilpel, Y. (2009). Genetic redundancy: New tricks for old genes. Cell, 136(3), 389–392. DOI logoGoogle Scholar
Kaltenböck, G., Heine, B., & Kuteva, T. (2011). On thetical grammar. Studies in Language, 35(4), 852–897. DOI logoGoogle Scholar
Kam, C. L. H., & Newport, E. L. (2005). Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. Language Learning and Development, 1(2), 151–195. DOI logoGoogle Scholar
(2009). Getting it right by getting it wrong: When learners change languages. Cognitive Psychology, 59(1), 30–66. DOI logoGoogle Scholar
Kaplan, R. M. (2014). Syntax. In R. Mitkov (Ed.), The Oxford handbook of computational linguistics (2nd ed., pp. 74–93). Oxford University Press. DOI logoGoogle Scholar
Karttunen, L., Chanod, J. P., Grefenstette, G., & Schille, A. (1996). Regular expressions for language engineering. Natural Language Engineering, 2(4), 305–328. DOI logoGoogle Scholar
Keating, G. D. (2014). Eye tracking with text. In J. Jegerski & B. VanPatten (Eds.), Research methods in second language psycholinguistics (pp. 69–92). Routledge. DOI logoGoogle Scholar
Keen, E. & Grüter, T. (Eds.). (2021). Prediction in second language processing and learning. John Benjamins. DOI logoGoogle Scholar
Keller, F., & Sorace, A. (2003). Gradient auxiliary selection and impersonal passivization in German: An experimental investigation. Journal of Linguistics, 39(1), 57–108. DOI logoGoogle Scholar
Kilgarriff, A., & Renau, I. (2013). esTenTen, a vast web corpus of Peninsular and American Spanish. Procedia-Social and Behavioral Sciences, 95, 12–19. DOI logoGoogle Scholar
Kimppa, L., Kujala, T., Leminen, A., Vainio, M., & Shtyrov, Y. (2015). Rapid and automatic speech-specific learning mechanism in human neocortex. NeuroImage, 118, 282–291. DOI logoGoogle Scholar
King, J. W., & Kutas, M. (1995). Who did what and when? Using word- and clause-level ERPs to monitor working memory usage in reading. Journal of Cognitive Neuroscience, 7(3), 376–395. DOI logoGoogle Scholar
Klein, W., & Perdue, C. (1992). Utterance structure: Developing grammars again. John Benjamins. DOI logoGoogle Scholar
(1997). The Basic Variety (or: Couldn’t natural languages be much simpler?). Second Language Research, 13(4), 301–347. DOI logoGoogle Scholar
Kóbor, A., Takács, Á., Kardos, Z., Janacsek, K., Horváth, K., Csépe, V., & Nemeth, D. (2018). ERPs differentiate the sensitivity to statistical probabilities and the learning of sequential structures during procedural learning. Biological Psychology, 135, 180–193. DOI logoGoogle Scholar
Koeneman, O., & Zeijlstra, H. (2017). Introducing syntax. Cambridge University Press. DOI logoGoogle Scholar
Koopman, H., & Sportiche, D. (1991). The position of subjects. Lingua, 85(2–3), 211–258. DOI logoGoogle Scholar
Kraš, T. (2009). Native-like attainment of the lexicon-syntax interface in the L2: Converging evidence from different methodologies, In J. Chandlee, M. Franchini, S. Lord & G.-M. Rheiner (Eds.), Proceedings of the 33th annual Boston University conference on language development (pp.278–289). Cascadilla Press.Google Scholar
(2010). Unaccusativity in L2 Italian at the lexico-syntax interface. In M. Iverson, I. Ivanov, T. Judy, J. Rothman, R. Slabakova, & M. Tryzna (Eds.), Proceedings of the mind/context divide workshop on linguistic interfaces and acquisition (pp. 60–71). Cascadilla Press.Google Scholar
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647. DOI logoGoogle Scholar
Landau, B., & Gleitman, L. R. (1985). Language and experience: Evidence from the blind child. Harvard University Press.Google Scholar
Langacker, R. W. (1987). Foundations of Cognitive Grammar: Vol. I, Theoretical Prerequisites. Stanford University Press.Google Scholar
(2017). Entrenchment in cognitive grammar. In H.-J. Schmid (Ed.), Entrenchment and the psychology of language learning: How we reorganize and adapt linguistic knowledge (pp. 39–56). De Gruyter Mouton. DOI logoGoogle Scholar
Lau, E., & Liao, C.-H. (2018). Linguistic structure across time: ERP responses to coordinated and uncoordinated noun phrases. Language, Cognition and Neuroscience, 33(5), 633–647. DOI logoGoogle Scholar
Lehecka, T. (2015). Collocations and colligations. In J.-O. Östman & J. Verschueren (Eds.), Handbook of pragmatics (pp. 1–20). John Benjamins. DOI logoGoogle Scholar
Lester, N. A., Moran, S., Küntay, A. C., Allen, S. E. M., Pfeiler, B., & Stoll, S. (2022). Detecting structured repetition in child-surrounding speech: Evidence from maximally diverse languages. Cognition, 221, Article 104986. DOI logoGoogle Scholar
Levin, B., & Rappaport-Hovav, M. (1995). Unaccusativity: At the syntax-lexical semantics interface. The MIT Press. [URL]
Li, P., Jeong, H. and Xu, Y. (2017). A consequence of an internal generative process by which the human brain draws upon given information to construct hypothesized candidate representations of the forthcoming information. Neuropsychologia, 106, pp.64–75.Google Scholar
Lidz, J., & Gagliardi, A. (2015). How nature meets nurture: Universal grammar and statistical learning. Annual Review of Linguistics, 1, 333–353. DOI logoGoogle Scholar
Liu, H., Forest, T. A., Duncan, K., & Finn, A. S. (2023). What sticks after statistical learning: The persistence of implicit versus explicit memory traces. Cognition, 236, Article 105439. DOI logoGoogle Scholar
Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527. DOI logoGoogle Scholar
(1997). Automaticity and reading: Perspectives from the instance theory of automatization. Reading & Writing Quarterly: Overcoming Learning Difficulties, 13(2), 123–146. DOI logoGoogle Scholar
(2002). An instance theory of attention and memory. Psychological Review, 109(2), 376–400. DOI logoGoogle Scholar
Logan, G. D., & Klapp, S. T. (1991). Automatizing alphabet arithmetic: I. Is extended practice necessary to produce automaticity? Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(2), 179–195. DOI logoGoogle Scholar
Lohndal, T. & Uriagereka, J. (2017). Third-Factor Explanations and Universal Grammar. In I. Roberts (ed). The Oxford Handbook of Generative Grammar, Oxford, Oxford University Press, pp. 114–128Google Scholar
Lovibond, P. F., & Shanks, D. R. (2002). The role of awareness in Pavlovian conditioning: Empirical evidence and theoretical implications. Journal of Experimental Psychology: Animal Behavior Processes, 28(1), 3–26. DOI logoGoogle Scholar
Luck, S. J., & Kappenman, E. S. (Eds.) (2012). The Oxford handbook of event-related potentials components. Oxford University Press. DOI logoGoogle Scholar
Lum, J. A., Conti-Ramsden, G., Page, D., & Ullman, M. T. (2012). Working, declarative and procedural memory in specific language impairment. Cortex, 48(9), 1138–1154. DOI logoGoogle Scholar
MacKenzie, I. (2006). Unaccusative verbs in Romance languages. Palgrave Macmillan. DOI logoGoogle Scholar
MacWhinney, B. (2001). The competition model: The input, the context, and the brain. In P. Robinson (Ed.), Cognition and second language instruction (pp. 69–90). Cambridge University Press. DOI logoGoogle Scholar
(2005). A unified model of language acquisition. In J. F. Kroll & A. M. B. de Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 49–67). Oxford University Press.Google Scholar
Malec, W. (2009). On the asymmetry of verb–noun collocations. In J. Arabski & A. Wojtaszek (Eds.), Neurolinguistic and psycholinguistic perspectives on SLA (pp. 126–144). Multilingual Matters. DOI logoGoogle Scholar
Mani, N., & Huettig, F. (2012). Prediction during language processing is a piece of cake – But only for skilled producers. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 843–847. DOI logoGoogle Scholar
Manning, C. D. (2003). Probabilistic syntax. In R. Bod, J. Hay & S. Jannedy (Eds.), Probabilistic linguistics (pp. 289–341). The MIT Press. DOI logoGoogle Scholar
Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science. The MIT Press.Google Scholar
Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992). Overregularization in language acquisition. Monographs of the Society for Research in Child Development, 57(4), 1–182. DOI logoGoogle Scholar
Martin, C. D., Thierry, G., Kuipers, J.-R., Boutonnet, B., Foucart, A., & Costa, A. (2013). Bilinguals reading in their second language do not predict upcoming words as native readers do. Journal of Memory and Language, 69(4), 574–588. DOI logoGoogle Scholar
McClelland, J. L., & Patterson, K. (2002). Rules or connections in past-tense inflections: What does the evidence rule out? Trends in Cognitive Sciences, 6(11), 465–472. DOI logoGoogle Scholar
McLaughlin, B. (1990). Restructuring. Applied Linguistics, 11(2), 113–128. DOI logoGoogle Scholar
McLaughlin, B., & Heredia, R. (1996). Information processing approaches to research on second language acquisition and use. In W. Ritchie & T. Bathia (Eds.), Handbook of second language acquisition (pp. 213–228). Academic Press.Google Scholar
McLaughlin, J., Osterhout, L., & Kim, A. (2004). Neural correlates of second-language word learning: Minimal instruction produces rapid change. Nature Neuroscience, 7(7), 703–704. DOI logoGoogle Scholar
McLaughlin, J., Tanner, D., Pitkänen, I., Frenck-Mestre, C., Inoue, K., Valentine, G., & Osterhout, L. (2010). Brain potentials reveal discrete stages of L2 grammatical learning. Language Learning, 60(Suppl 2), 123–150. DOI logoGoogle Scholar
McNealy, K., Mazziotta, J. C., & Dapretto, M. (2010). The neural basis of speech parsing in children and adults. Developmental Science, 13(2), 385–406. DOI logoGoogle Scholar
(2011). Age and experience shape developmental changes in the neural basis of language-related learning. Developmental Science, 14(6), 1261–1282. DOI logoGoogle Scholar
Mehler, J., Peña, M., Nespor, M., & Bonatti, L. (2006). The “soul” of language does not use statistics: Reflections on vowels and consonants. Cortex, 42(6), 846–854. DOI logoGoogle Scholar
Michaelis, L. A. (2004). Type shifting in construction grammar: An integrated approach to aspectual coercion. Cognitive Linguistics, 15(1), 1–67. DOI logoGoogle Scholar
Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring epigenetic marks by analysis of noncovalent interactions. ChemBioChem, 22(2), 408–415. DOI logoGoogle Scholar
Mintz, T. H. (2002). Category induction from distributional cues in an artificial language. Memory & Cognition, 30(5), 678–686. DOI logoGoogle Scholar
(2003). Frequent frames as a cue for grammatical categories in child directed speech. Cognition, 90(1), 91–117. DOI logoGoogle Scholar
Misyak, J. B., & Christiansen, M. H. (2012). Statistical learning and language: An individual differences study. Language Learning, 62(1), 302–331. DOI logoGoogle Scholar
Mitchell, D. C. (1994). Sentence parsing. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics (pp. 375–409). Academic Press.Google Scholar
Mitchell, R., & Myles, F. (2004). Second language learning theories (2nd ed.). Hodder Arnold.Google Scholar
Mizuguchi, M. (2019). Ambiguous labeling and full interpretation. Studia Linguistica, 73(3), 563–603. DOI logoGoogle Scholar
Moens, M., & Steedman, M. (2005). Temporal ontology and temporal reference. In I. Mani, J. Pusteiovskj, & R. Gaizauskas (Eds.), The language of time: A reader (pp. 93–114). Oxford University Press. DOI logoGoogle Scholar
Molinaro, N., Giannelli, F., Caffarra, S., & Martin, C. (2017). Hierarchical levels of representation in language prediction: The influence of first language acquisition in highly proficient bilinguals. Cognition, 164, 61–73. DOI logoGoogle Scholar
Montrul, S. & Slabakova, R. (2003). Competence similarities between native and near-NS: An investigation of the preterite-imperfect contrast in Spanish. Studies in Second Language Acquisition, 25(3), 351–398. DOI logoGoogle Scholar
Morgan, E., & Levy, R. (2016). Abstract knowledge versus direct experience in processing of binomial expressions. Cognition, 157, 384–402. DOI logoGoogle Scholar
Mueller, J. L., Oberecker, R., & Friederici, A. D. (2009). Syntactic learning by mere exposure: An ERP study in adult learners. BMC Neuroscience, 10, Article 89. DOI logoGoogle Scholar
Munn, A., Karen, M., & Cristina, S. (2006). Maximality and plurality in children’s interpretation of definites. In D. Bamman, T. Magnitskaia, & C. Zaller (Eds.), Proceedings of the 30th annual Boston University conference on language development (pp. 377–387). Cascadilla Press.Google Scholar
Myles, F. (2004). From data to theory: The over-representation of linguistic knowledge in SLA. Transactions of the philological Society, 102(2), 139–168. DOI logoGoogle Scholar
(2016). Formulaic Sequences (FS) cannot be an umbrella term in SLA: Focusing on psycholinguistic FSs and their identification. Studies in Second Language Acquisition, 39(1), 3–28. DOI logoGoogle Scholar
Myles, F., Hooper, J., & Mitchell, R. (1998). Rote or rule? Exploring the role of formulaic language in classroom second language learning. Language Learning, 48(3), 323–363. DOI logoGoogle Scholar
Namy, L. L. (2012). Getting specific: Early general mechanisms give rise to domain-specific expertise in word learning. Language Learning and Development, 8(1), 47–60. DOI logoGoogle Scholar
Nemeth, D., Janacsek, K., & Fiser, J. (2013). Age-dependent and coordinated shift in performance between implicit and explicit skill learning. Frontiers in Computational Neuroscience, 7, 147. DOI logoGoogle Scholar
Newmeyer, F. J. (2005). Possible and probable languages: A generative perspective on linguistic typology. Oxford University Press. DOI logoGoogle Scholar
Newport, E. L. (2011). The modularity issue in language acquisition: A rapprochement? Comments on Gallistel and Chomsky. Language Learning and Development, 7(4), 279–286. DOI logoGoogle Scholar
Newport, E. L., & Aslin, R. N. (2004). Learning at a distance I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48(2), 127–162. DOI logoGoogle Scholar
Nooteboom, C., Weerman, F., & Wijnen, F. (Eds.) (2002). Storage and computation in the language faculty. Dordrecht: Kluwer. DOI logoGoogle Scholar
Norde, M. (2009). Degrammaticalization. Oxford University Press. DOI logoGoogle Scholar
Norris, J., & Ortega, L. (2003). Defining and measuring SLA. In C. Doughty & M. Long (Eds.), The handbook of second language acquisition (pp. 716–761). Wiley-Blackwell. DOI logoGoogle Scholar
Nosofsky, R. M. (2014). The generalized context model: An exemplar model of classification. In M. Pothos & A. Wills (Eds.), Formal approaches in categorization (pp. 18–39). Cambridge University Press.Google Scholar
Nowak, M. A., Boerlijst, M. C., Cooke, J., & Smith, J. M. (1997). Evolution of genetic redundancy. Nature, 388(6638), 167–171. DOI logoGoogle Scholar
O’Donnell, T. J. (2015). Productivity and reuse in language: A theory of linguistic computation and storage. The MIT Press. DOI logoGoogle Scholar
O’Donnell, T. J., Goodman, N. D., & Tenenbaum, J. B. (2009). Fragment grammars: Exploring computation and reuse in language. MIT Computer Science and Artificial Intelligence Laboratory Technical Report Series, MIT-CSAIL-TR-2009-013.Google Scholar
O’Donnell, T., Snedeker, J., Tenenbaum, J., & Goodman, N. (2011). Productivity and reuse in language: A developmental study. Proceedings of the Annual Meeting of the Cognitive Science Society, 33/33, 1613–1618. [URL]
O’Grady, W. (2008). Language without grammar. In P. Robinson & N. Ellis (Eds.), Handbook of cognitive linguistics and second language acquisition (pp. 139–167). Routledge.Google Scholar
(2011). Interfaces and processing. Linguistic Approaches to Bilingualism, 1(1), 63–66. DOI logoGoogle Scholar
(2012). Three factors in the design and acquisition of language. WIREs Cognitive Science, 3(5), 493–499. DOI logoGoogle Scholar
Onnis, L. (2012). The potential contribution of statistical learning to second language acquisition. In J. Williams & P. Rebuschat (Eds), Statistical learning and second language acquisition (pp. 203–236). De Gruyter Mouton. DOI logoGoogle Scholar
Onnis, L., Waterfall, H. R., & Edelman, S. (2008a). Learn locally, act globally: Learning language from variation set cues. Cognition, 109(3), 423–430. DOI logoGoogle Scholar
Onnis, L., Waterfall, H., & Edelman, S. (2008b). Variation sets facilitate artificial language learning. Proceedings of the 30th Annual Meeting of the Cognitive Science Society, 30. [URL]
Ortega, L. (2011). Sequences and processes in language learning. In C. Doughty & M. Long (Eds.), The handbook of language teaching. Wiley-Blackwell. DOI logoGoogle Scholar
(2014). Trying out theories on interlanguage: Description and explanation over 40 years of L2 negation research. In Z. Han & E. Tarone (Eds.), Interlanguage: Forty years later (pp. 173–201). John Benjamins. DOI logoGoogle Scholar
Oshita, H. (2001). The unaccusative trap in second language acquisition. Studies in Second Language Acquisition, 23(2), 279–304. DOI logoGoogle Scholar
Osterhout, L., Kim, A., & Kuperberg, G. R. (2012). The neurobiology of sentence comprehension. In M. J. Spivey, K. McRae, & M. F. Joanisse (Eds.), The Cambridge handbook of psycholinguistics (pp. 365–389). Cambridge University Press. DOI logoGoogle Scholar
Osterhout, L., McLaughlin, J., Kim, A., Greenwald, R., & Inoue, K. (2004). Sentences in the brain: Event-related potentials as real-time reflections of sentence comprehension and language learning. In M. Carreiras & C. Clifton (Eds.), The on-line study of sentence comprehension: Eye-tracking, ERPs and beyond (pp. 271–308). Psychology Press.Google Scholar
Osterhout, L., McLaughlin, J., Pitkanen, I., Frenck-Mestre, C., & Molinaro, N. (2006). Novice learners, longitudinal designs and event-related potentials: A means for exploring the neurocognition of second language processing. In P. Indefrey & M. Gullberg (Eds.), The cognitive neuroscience of second language acquisition (pp. 199–230). Blackwell. DOI logoGoogle Scholar
Osterhout, L., Poliakov, A., Inoue, K., McLaughlin, J., Valentine, G., Pitkanen, I., Frenck-Mestre, C., & Hirschensohn, J. (2008). Second-language learning and changes in the brain. Journal of Neurolinguistics, 21(6), 509–521. DOI logoGoogle Scholar
Packard, M. G., & Goodman, J. (2013). Factors that influence the relative use of multiple memory systems. Hippocampus, 23(11), 1044–1052. DOI logoGoogle Scholar
Paczynski, M., Jackendoff, R., & Kuperberg, G. (2014). When events change their nature: The neurocognitive mechanisms underlying aspectual coercion. Journal of Cognitive Neuroscience, 26(9), 1905–1917. DOI logoGoogle Scholar
Pallotti, G. (2007). An operational definition of the emergence criterion. Applied Linguistics, 28(3), 361–382. DOI logoGoogle Scholar
Paolieri, D., Cubelli, R., Macizo, P., Bajo, T., Lotto, L., & Job, R. (2010). Grammatical gender processing in Italian and Spanish bilinguals. Quarterly Journal of Experimental Psychology, 63(8), 1631–1645. DOI logoGoogle Scholar
Paradis, M. (2004). A neurolinguistic theory of bilingualism. John Benjamins. DOI logoGoogle Scholar
(2013). Late-L2 increased reliance on L1 neurocognitive substrates: A comment on Babcock, Stowe, Maloof, Brovetto & Ullman (2012). Bilingualism: Language and Cognition, 16, 704–07. DOI logoGoogle Scholar
(2019). Special foreword. In J. Schwieter & M. Paradis (Eds.), The handbook of the neuroscience of multilingualism (pp. xxxiii–xxxviii). Wiley-Blackwell. DOI logoGoogle Scholar
Patel, A. D. (2012). Language, music, and the brain: A resource-sharing framework. In P. Rebuschat, M. Rohrmeier, J. A. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 204–223). Oxford University Press.Google Scholar
Pearce, D. (2002). A comparative evaluation of collocation extraction techniques. In Proceedings of the Third International Conference on Language Resources and Evaluation. European Language Resources Association (ELRA). [URL]
Pearlmutter, N. J., & MacDonald, M. C. (1995). Individual differences and probabilistic constraints in syntactic ambiguity resolution. Journal of Memory and Language, 34(4), 521–542. DOI logoGoogle Scholar
Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). Signal-driven computations in speech processing. Science, 298(5593), 604–607. DOI logoGoogle Scholar
Pérez-Leroux, A. T. (2011). What I don’t understand about interfaces. Linguistic Approaches to Bilingualism, 1(1), 71–73. DOI logoGoogle Scholar
Perfetti, C. & Helder, A. (2022). Progress in reading science: Word identification, comprehension, and universal perspectives. In M. J. Snowling, C. Hulme, & K. Nation (Eds.), The science of reading: A handbook (2nd ed) (pp. 5–35). Wiley Blackwell. DOI logoGoogle Scholar
Perpiñán, S., & Cardinaletti, A. (2022). Null-Prep as a systematic interlanguage phenomenon: Evidence from relative clauses, interrogatives, and sluicing constructions. Second Language Research, 0(0). DOI logoGoogle Scholar
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. DOI logoGoogle Scholar
Phillips, C. (2013). Parser-grammar relations: We don’t understand everything twice. In M. Sanz, I. Laka, & M. K. Tanenhaus (Eds.), Language down the garden path: The cognitive and biological basis for linguistic structure (pp. 294–315). Oxford University Press. DOI logoGoogle Scholar
Phillips, C., Kazanina, N., & Abada, S. H. (2005). ERP effects of the processing of syntactic long-distance dependencies. Cognitive Brain Research, 22(3), 407–428. DOI logoGoogle Scholar
Piattelli-Palmarini, M., Uriagereka, J. & Saladuru, P. (eds) (2009). Of Minds & Language. Oxford: Oxford University Press.Google Scholar
Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychological Bulletin, 144(10), 1002–1044. DOI logoGoogle Scholar
(2007). Processability theory. In B. VanPatten & J. Williams (Eds.), Theories in second language acquisition (pp. 137–154). Lawrence Erlbaum Associates.Google Scholar
(2015). An outline of processability theory and its relationship to other approaches to SLA. Language Learning, 65(1), 123–151. DOI logoGoogle Scholar
Pienemann, M., Di Biase, B., & Kawaguchi, S. (2005). Extending processability theory. In M. Pienemann (Ed.), Cross-linguistic aspects of processability theory (pp. 199–251). John Benjamins. DOI logoGoogle Scholar
Pinker, S. (1991). Rules of language. Science, 253(5019), 530–535. DOI logoGoogle Scholar
(1997). Words and rules in the human brain. Nature, 387(6633), 547–548. DOI logoGoogle Scholar
(1998). Words and rules. Lingua, 106(1–4), 219–242. DOI logoGoogle Scholar
(1999). Words and rules: The ingredients of language. Basic Books.Google Scholar
(2002). Preface. In S. Nootebom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. ix–xii). Kluwer.Google Scholar
Pinker, S., & Prince, A. (1994). Regular and irregular morphology and the psychological status of rules of grammar. In S. D. Lima, R. L. Corrigan, & G. K. Iverson (Eds.), The reality of linguistic rules (pp. 321–351). John Benjamins. DOI logoGoogle Scholar
Pinker, S., & Ullman, M. T. (2002). Combination and structure, not gradedness, is the issue. Trends in Cognitive Sciences, 6(11), 472–474.Google Scholar
Plebanek, D. J., & James, K. H. (2021). The effects of frequency, variability, and co-occurrence on category formation in neural systems. Journal of Cognitive Neuroscience, 33(8), 1397–1412. DOI logoGoogle Scholar
Plunkett, K., & Marchman, V. (1991). U-shaped learning and frequency effects in a multi-layered perceptron: Implications for child language acquisition. Cognition, 38(1), 43–102. DOI logoGoogle Scholar
Poeppel, D., & Monahan, P. J. (2011). Feedforward and feedback in speech perception: Revisiting analysis by synthesis. Language and Cognitive Processes, 26(7), 935–951. DOI logoGoogle Scholar
Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10(2), 59–63. DOI logoGoogle Scholar
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414(6863), 546–550. DOI logoGoogle Scholar
Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41(3), 245–251. DOI logoGoogle Scholar
Prinz, W. (2018). Contingency and similarity in response selection. Consciousness and Cognition, 64, 146–153. DOI logoGoogle Scholar
Pulvermüller, F., Cappelle, B., & Shtyrov, Y. (2013). Brain basis of meaning, words, constructions, and grammar. In T. Hoffmann & G. Trousdale (Eds.), The Oxford handbook of construction grammar (pp. 397–416). Oxford University Press. DOI logoGoogle Scholar
Pustejovsky, J. (1995). The generative lexicon. The MIT Press.Google Scholar
Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nature Human Behaviour, 2(9), 693–705. DOI logoGoogle Scholar
Rah, A., & Adone, D. (2010). Processing of the reduced relative clause versus main verb ambiguity in L2 learners at difference proficiency levels. Studies in Second Language Acquisition, 32(1), 79–109. DOI logoGoogle Scholar
Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., & Baayen, H. (2014). The myth of cognitive decline: Non-linear dynamics of lifelong learning. Topics in Cognitive Science, 6(1), 5–42. DOI logoGoogle Scholar
Ramscar, M., Yarlett, D., Dye, M., Denny, K., & Thorpe, K. (2010). The effects of feature-label-order and their implications for symbolic learning. Cognitive Science, 34(6), 909–957. DOI logoGoogle Scholar
Randall, J. (2007). Parameterized auxiliary selection: A fine-grained interaction of features and linking rules. In R. Aranovich (Ed.), Split auxiliary systems (pp. 207–235). John Benjamins. DOI logoGoogle Scholar
Rastelli, S. (2007). Lexical aspect and auxiliary selection in Italian learner corpora. Linguistica e Filologia, XXV, 67–97.Google Scholar
(2014). Discontinuity in second language acquisition: The switch between statistical and grammatical learning. Multilingual Matters. DOI logoGoogle Scholar
(2016). A quantum-cognition approach to the study of second language acquisition. Journal of Cognitive Science, 17(2), 229–262. DOI logoGoogle Scholar
(2019). The discontinuity model: Statistical and grammatical learning in adult second-language acquisition. Language Acquisition: A Journal of Developmental Linguistics, 26(4), 387–415. DOI logoGoogle Scholar
(2022). The uncertainty principle in second language acquisition. In A. G. Benati & J. W. Schwieter (Eds.), Second language acquisition theory: The legacy of Mike Long (pp. 101–112). John Benjamins. DOI logoGoogle Scholar
Rayner, K., & Liversedge, S. P. (2004). Visual and linguistic processing during eye fixations in reading. In J. M. Henderson & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 59–104). Psychology Press.Google Scholar
Rayner, K., & Sereno, S. C. (1994). Eye movements in reading: Psycholinguistic studies. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics (pp. 57–81). Academic Press.Google Scholar
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. [URL]
Reeder, P., Newport, E., & Aslin, R. (2010). Novel words in novel contexts: The role of distributional information in form-class category learning. Proceedings of the Annual Meeting of the Cognitive Science Society, 32, 2063–2068. [URL]
Requena, P. E., Román-Hernández, A. I., & Miller, K. (2015). Children’s knowledge of the Spanish copulas ser and estar with novel adjectives. Language Acquisition: A Journal of Developmental Linguistics, 22(2), 193–207. DOI logoGoogle Scholar
Rizzi, L. (2009). Movements and concepts of locality. In M. Piattelli-Palmarini, J. Uriagereka, & P. Salaburu (Eds.), Of minds and language: A dialogue with Noam Chomsky in the Basque Country (pp. 154–168). Oxford University Press. DOI logoGoogle Scholar
(2016). Labeling, maximality and the head – phrase distinction. The Linguistic Review, 33(1), 103–127. DOI logoGoogle Scholar
Roberts, L., Gullberg, M., & Indefrey, P. (2008). Online pronoun resolution in L2 discourse: L1 influence and general learner effects. Studies in Second Language Acquisition, 30(3), 333–357. DOI logoGoogle Scholar
Roberts, L., & Siyanova-Chanturia, A. (2013). Using eye-tracking to investigate topics in L2 acquisition and L2 processing. Studies in Second Language Acquisition, 35(2), 213–235. DOI logoGoogle Scholar
Roeper, T. (2007). What frequency can do and what it can’t. In I. Gülzow & N. Gagarina (Ed.), Frequency effects in language acquisition: Defining the limits of frequency as an explanatory concept (pp. 23–48). De Gruyter Mouton. DOI logoGoogle Scholar
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. WIREs Cognitive Science, 1(6), 906–914. DOI logoGoogle Scholar
Rossini Favretti, R. (2000). Progettazione e costruzione di un corpus di italiano scritto: CORIS/CODIS. In R. Rossini Favretti (Ed.), Linguistica e informatica. Multimedialità, corpora e percorsi di apprendimento (pp. 39–56). Bulzoni.Google Scholar
Rossini Favrettii, R., Tamburini, F. & De Santis, C. (2002). A corpus of written Italian: A defined and a dynamic model. In A. Wilson, P. Rayson, & T. McEnery (Eds.), A rainbow of corpora: Corpus linguistics and the languages of the world (pp. 27–38). Lincom.Google Scholar
Saffran, J. R. (2002). Constraints on statistical language learning. Journal of Memory and Language, 47(1), 172–196. DOI logoGoogle Scholar
Saffran, J. R., & Wilson, D. P. (2003). From syllables to syntax: Multilevel statistical learning by 12-month-old infants. Infancy, 4(2), 273–284. DOI logoGoogle Scholar
Schlund, M. W. & Ortu, D. (2010). Experience-dependent changes in human brain activation during contingency learning. Neuroscience, 165(1), 151–158. DOI logoGoogle Scholar
Schmid, H.-J. (Ed.) (2017). Entrenchment and the psychology of language learning: How we reorganize and adapt linguistic knowledge. De Gruyter Mouton. DOI logoGoogle Scholar
Schmidt, J. R., & De Houwer, J. (2016). Time course of colour-word contingency learning: Practice curves, pre-exposure benefits, unlearning, and relearning. Learning and Motivation, 56, 15–30. DOI logoGoogle Scholar
Schmitt, C. J. (1996). Aspect and the syntax of noun phrases (Unpublished doctoral dissertation). University of Maryland, College Park.
Schmitt, C., & Miller, K. (2007). Making discourse-dependent decisions: The case of the copulas ser and estar in Spanish. Lingua, 117(11), 1907–1929. DOI logoGoogle Scholar
Schmitt, N., & Underwood, G. (2004). Exploring the processing of formulaic sequences through a self-paced reading task. In N. Schmitt (Ed.), Formulaic sequences (pp. 173–189). John Benjamins. DOI logoGoogle Scholar
Schreiweis, C., Bornschein, U., Burguière, E., Kerimoglu, C., Schreiter, S., Dannemann, M., Goyal, S., Rea, E., French, C. A., Puliyadi, R., Groszer, M., Fisher, S. E., Mundry, R., Winter, C., Hevers, W., Pääbo, S., Enard, W., & Graybiel, A. M. (2014). Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 14253–14258. DOI logoGoogle Scholar
Schuler, K. D., Reeder, P. A., Newport, E. L., & Aslin, R. N. (2017). The effect of Zipfian frequency variations on category formation in adult artificial language learning. Language Learning and Development, 13(4), 357–374. DOI logoGoogle Scholar
Schuler, K., Yang, C., & Newport, E. (2016). Testing the Tolerance Principle: Children form productive rules when it is more computationally efficient to do so. In Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 2321–2326).Google Scholar
Shillcock, R. (2007). Eye movements and visual world recognition. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 89–105). Oxford University Press.Google Scholar
Segalowitz, N. (2003). Automaticity and second languages. In C. Doughty & M. Long (Eds.), The handbook of second language acquisition (pp. 382–408). Blackwell. DOI logoGoogle Scholar
Segalowitz, N., & Hulstijn, J. (2005). Automaticity in bilingualism and second language learning. In J. F. Kroll & A. M. B. de Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 371–388). Oxford University Press.Google Scholar
Segalowitz, N. S., & Segalowitz, S. J. (1993). Skilled performance, practice, and the differentiation of speed-up from automatization effects: Evidence from second language word recognition. Applied Psycholinguistics, 14(3), 369–385. DOI logoGoogle Scholar
Seidenberg, M. S. (1985). The time course of phonological code activation in two writing systems. Cognition, 19(1), 1–30. DOI logoGoogle Scholar
Seidenberg, M. S., Farry-Thorn, M., & Zevin, J. D. (2022). Models of word reading: What have we learned? In M. J. Snowling, C. Hulme, & K. Nation (Eds.), The science of reading: A handbook (pp. 36–59). Wiley-Blackwell. DOI logoGoogle Scholar
Seidenberg, M. S., MacDonald, M. C., & Saffran, J. R. (2002). Does grammar start where statistics stop? Science, 298(5593), 553–554. DOI logoGoogle Scholar
Seidenberg, M. S., Waters, G. S., Barnes, M. A., & Tanenhaus, M. K. (1984). When does irregular spelling or pronunciation influence word recognition? Journal of Verbal Learning & Verbal Behavior, 23(3), 383–404. DOI logoGoogle Scholar
Selinker, L. (1972). Interlanguage. International Review of Applied Linguistics in Language Teaching IRAL, 10(3), 209–231. DOI logoGoogle Scholar
Shanks, D. R. (2007). Associationism and cognition: Human contingency learning at 25. Quarterly Journal of Experimental Psychology, 60(3), 291–309. DOI logoGoogle Scholar
Sharwood Smith, M., & Truscott, J. (2014). The multilingual mind: A modular processing perspective. Cambridge University Press.Google Scholar
Shtyrov, Y. (2012). Neural bases of rapid word learning. The Neuroscientist, 18(4), 312–319. DOI logoGoogle Scholar
Shtyrov, Y., Nikulin, V. V., & Pulvermüller, F. (2010). Rapid cortical plasticity underlying novel word learning. The Journal of Neuroscience, 30(50), 16864–16867. DOI logoGoogle Scholar
Sidtis, J. J., Van Lancker Sidtis, D., Dhawan, V., & Eidelberg, D. (2018). Switching language modes: Complementary brain patterns for formulaic and propositional language. Brain Connectivity, 8(3), 189–196. DOI logoGoogle Scholar
Siegelman, N., & Arnon, I. (2015). The advantage of starting big: Learning from unsegmented input facilitates mastery of grammatical gender in an artificial language. Journal of Memory and Language, 85, 60–75. DOI logoGoogle Scholar
Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120. DOI logoGoogle Scholar
Simor, P., Zavecz, Z., Horváth, K., Éltető, N., Török, C., Pesthy, O., Gombos, F., Janacsek, K., & Nemeth, D. (2019). Deconstructing procedural memory: Different learning trajectories and consolidation of sequence and statistical learning. Frontiers in Psychology, 9, Article 2708. DOI logoGoogle Scholar
Sinclair, J. (1998). The lexical item. In E. Weigand (Ed.), Contrastive lexical semantics (pp. 1–24). John Benjamins. DOI logoGoogle Scholar
Slabakova, R. (2016). Second language acquisition. Oxford University Press.Google Scholar
Smith, C. (1991). The parameter of aspect. Springer. DOI logoGoogle Scholar
Smolensky, P. (2012). Symbolic functions from neural computation. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 370(1971), 3543–3569. DOI logoGoogle Scholar
Solstad, T., Daskalaki, E., & Järvikivi, J. (2021). Expectations in language processing and production: An introduction to the special issue. Linguistics 59(2), 319–331. DOI logoGoogle Scholar
Sonbul, S., El-Dakhs, D., Conklin, K., & Carrol, G. (2022). “Bread and butter” or “butter and bread”? Nonnatives’ processing of novel lexical patterns in context. Studies in Second Language Acquisition, 45(2), 370–392. DOI logoGoogle Scholar
Sorace, A. (1993). Incomplete vs. divergent representations of unaccusativity in non native grammars of Italian. Second Language Research, 9(1), 22–47. DOI logoGoogle Scholar
(1996). The use of acceptability judgements in second language acquisition research. In W. C. Ritchie & T. K. Bhatia (Eds.), Handbook of second language acquisition (pp. 375–409). Academic Press.Google Scholar
(2000). Gradients in auxiliary selection with intransitive verbs. Language, 76(4), 859–890. DOI logoGoogle Scholar
(2004). Gradience at the lexicon-syntax: Evidence from auxiliary selection. In A. Alexiadou, E. Anagnostopoulou, & M. Everaert (Eds.), The unaccusativity puzzle: Explorations of the Syntax-Lexicon Interface (pp. 243–268). Oxford University Press. DOI logoGoogle Scholar
(2012). Pinning down the concept of ‘interface’ in bilingual development. Linguistic Approaches to Bilingualism, 1(1), 1–33. DOI logoGoogle Scholar
Sorace, A., & Filiaci, F. (2006). Anaphora resolution in near-native speakers of Italian. Second Language Research, 22(3), 339–368. DOI logoGoogle Scholar
Sorace, A., & Serratrice, L. (2009). Internal and external interfaces in bilingual language development: Beyond structural overlap. International Journal of Bilingualism, 13(2), 195–210. DOI logoGoogle Scholar
Spina, S. (2010). The dictionary of Italian collocations: Design and integration in an online learning environment. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odjik, S. Piperidis, M. Rosner & D. Tapias (Eds.), Proceedings of the seventh conference on international language resources and evaluation (LREC’10) (pp. 3202–3208). European Language Resources Association.Google Scholar
Spinner, P., Gass, S. M., & Behney, J. (2013). Ecological validity in eye-tracking: An empirical study. Studies in Second Language Acquisition, 35(2), 389–415. DOI logoGoogle Scholar
Spivey, M. J., Tanenhaus, M. K., Eberhard, K. M., & Sedivy, J. C. (2002). Eye movements and spoken language comprehension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychology, 45(4), 447–481. DOI logoGoogle Scholar
Squire, L. R., & Wixted, J. T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288. DOI logoGoogle Scholar
Starling, S. J., Reeder, P. A., & Aslin, R. N. (2018). Probability learning in an uncertain world: How children adjust to changing contingencies. Cognitive Development, 48, 105–116. DOI logoGoogle Scholar
Staub, A., & Rayner, K. (2007). Eye movements and on-line comprehension processes. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 327–342). Oxford University Press. DOI logoGoogle Scholar
Stefaniak, N., Baltazart, V., & Declercq, C. (2021). Processing verb meanings and the Declarative/Procedural Model: A developmental study. Frontiers in Psychology, 12, Article 714523. DOI logoGoogle Scholar
Stefanowitsch, A., & Gries, S. T. (2005). Covarying collexems. Corpus Linguistics and Linguistic Theory, 1(1), 1–43. DOI logoGoogle Scholar
Steinhauer, K. (2014). Event-related potentials (ERPs) in second language research: A brief introduction to the technique, a selected review, and an invitation to reconsider critical periods in L2. Applied Linguistics, 35(4), 393–417. DOI logoGoogle Scholar
Stemberger, J. P., & MacWhinney, B. (1988). Are inflected forms stored in the lexicon? In M. Hammond & M. Noonan (Eds.), Theoretical morphology: Approaches in modern linguistics (pp. 101–116). Academic Press. DOI logoGoogle Scholar
Swaab, T. Y., Ledoux, K., Camblin, C. C. & Boudewyn, M. A. (2012). Language-Related ERP Components. In S. Luck & E. Kappenman (Eds.), The Oxford handbook of event-related potential components (pp. 397–439). DOI logoGoogle Scholar
Tal, S., & Arnon, I. (2018). SES effects on the use of variation sets in child-directed speech. Journal of Child Language, 45(6), 1423–1438. DOI logoGoogle Scholar
Tanner, D. (2011). Agreement mechanisms in native and nonnative language processing: Electrophysiological correlates of complexity and interference (Unpublished doctoral dissertation). University of Washington.
(2013). Individual differences and stream of processing. Linguistic Approaches to Bilingualism, 3(3), 350–356. DOI logoGoogle Scholar
Tanner, D., Inoue, K., & Osterhout, L. (2014). Brain-based individual differences in online L2 grammatical comprehension. Bilingualism: Language and Cognition, 17(2), 277–293. DOI logoGoogle Scholar
Tanner, D., McLaughlin, J., Herschensohn, J., & Osterhout, L. (2013). Individual differences reveal stages of L2 grammatical acquisition: ERP evidence. Bilingualism: Language and Cognition, 16(2), 367–382. DOI logoGoogle Scholar
Tanner, D., Osterhout, L., & Herschensohn, J. (2009). Snapshots of grammaticalization: Differential electrophysiological responses to grammatical anomalies with increasing L2 exposure. In J. Chandlee, M. Franchini, S. Lord, & G.-M. Rheiner (Eds.), Proceedings of the 33rd annual Boston University Conference on Language Development (pp. 528–539). Cascadilla Press.Google Scholar
Tanner, D., & Van Hell, J. G. (2012). ERPs reveal individual differences in syntactic processing strategies. Poster presented at the Psychonomics Society Conference, Minneapolis, MN. DOI logo
Taraban, R., & McClelland, J. L. (1987). Conspiracy effects in word pronunciation. Journal of Memory and Language, 26(6), 608–631. DOI logoGoogle Scholar
Tettamanti, M., Rotondi, I., Perani, D., Scotti, G., Fazio, F., Cappa, S. F., & Moro, A. (2009). Syntax without language: neurobiological evidence for cross-domain syntactic computations. Cortex, 45(7), 825–838. DOI logoGoogle Scholar
Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The role of transitional probability. Language Learning and Development, 3(1), 1–42. DOI logoGoogle Scholar
Toledo, A., & Sassoon, G. W. (2011). Absolute vs. relative adjectives – Variance within vs. between individuals. Semantics and Linguistic Theory, 21, 135–154. DOI logoGoogle Scholar
Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Harvard University Press.Google Scholar
Townsend, D. J., & Bever, T. G. (2001). Sentence comprehension: The integration of habits and rules. The MIT Press. DOI logoGoogle Scholar
Townsend, P. (2006). The autonomy of Grammar. Oxford Philosophical Society. [URL]
Travis, L. (2010a). The role of features in syntactic theory and language variation. In J. M. Liceras, H. Zobl, & H. Goodluck (Eds.), The role of formal features in second language acquisition (pp. 22–47). Routledge.Google Scholar
(2010b). Inner aspect: The Articulation of VP. Springer. DOI logoGoogle Scholar
Tversky, A., & Gati, I. (1978). Studies of similarity. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 79–98). Lawrence Elbaum Associates.Google Scholar
Uddén, J., & Bahlmann, J. (2012). A rostro-caudal gradient of structured sequence processing in the left inferior frontal gyrus. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 367(1598), 2023–2032. DOI logoGoogle Scholar
Uddén, J., Ingvar, M., Hagoort, P., & Petersson, K. M. (2012). Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: investigating the push-down stack model. Cognitive Science, 36(6), 1078–1101. DOI logoGoogle Scholar
Ullman, M. T. (1999a). Acceptability ratings of regular and irregular past-tense forms: Evidence for a dual-system model of language from word frequency and phonological neighbourhood effects. Language and Cognitive Processes, 14(1), 47–67. DOI logoGoogle Scholar
(1999b). Naming tools and using rules: Evidence that a frontal/basal-ganglia system underlies both motor skill knowledge and grammatical rule use. Brain and Language, 69(3), 316–318.Google Scholar
(2004). Contributions of memory circuits to language: The Declarative/​Procedural Model. Cognition, 92(1–2), 231–270. DOI logoGoogle Scholar
(2005). A cognitive neuroscience perspective on second language acquisition: The Declarative/Procedural Model. In C. Sanz (Ed.), Mind and context in second language acquisition (pp. 141–178). Georgetown University Press.Google Scholar
(2008). The role of memory systems in disorders of language. In B. Stemmer & H. A. Whitaler (Eds.), Handbook of the neuroscience of language (pp. 189–198). Academic Press. DOI logoGoogle Scholar
(2016). The Declarative/Procedural Model: A neurobiological model of language learning, knowledge and use. In G. Hickok & S. L. Small (Eds.), The neurobiology of language (pp. 953–968). Elsevier. DOI logoGoogle Scholar
(2020). The Declarative-Procedural Model. In B. VanPatten, G. D. Keating, & S. Wullf (Eds.), Theories in second language acquisition: An introduction (3rd ed., pp. 128–161). Routledge. DOI logoGoogle Scholar
Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., & Pinker, S. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9(2), 266–276. DOI logoGoogle Scholar
Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71, 389–417. DOI logoGoogle Scholar
Ullman, M. T., & Lovelett, J. T. (2018). Implications of the Declarative/Procedural Model for improving second language learning: The role of memory enhancement techniques. Second Language Research, 34(1), 39–65. DOI logoGoogle Scholar
Ullman, M. T., & Pullman, M. Y. (2015). A compensatory role for declarative memory in neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 51, 205–222. DOI logoGoogle Scholar
Valois, D. (1991). The internal structure of DP (Unpublished doctoral dissertation). University of California.
Van Berkum, J. J., Zwitserlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701–718. DOI logoGoogle Scholar
Van den Brink, D., Brown, C. M., & Hagoort, P. (2006). The cascaded nature of lexical selection and integration in auditory sentence processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(2), 364–372. DOI logoGoogle Scholar
Van Gompel, R. P. G., & Pickering, M. J. (2007). Syntactic Parsing. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 289–308). Oxford University Press. DOI logoGoogle Scholar
Van Hout, A. (2004). Unaccusativity as telicity checking. In A. Alexiadou, E. Anagnostopoulou, & M. Everaert (Eds.), The unaccusativity puzzle: Explorations of the syntax-lexicon interface (pp. 60–83). Oxford University Press. DOI logoGoogle Scholar
Van Lancker Sidtis, D. (2004). When novel sentences spoken or heard for the first time in the history of the universe are not enough: Toward a dual-process model of language. International Journal of Language & Communication Disorders, 39(1), 1–44. DOI logoGoogle Scholar
(2008). Formulaic and novel language in a ‘dual process’ model of language competence: Evidence from surveys, speech samples, and schemata. In R. L. Corrigan, E. A. Moravcsik, H. Ouali, & K. M. Wheatley (Eds.), Formulaic language: Vol. 2, Acquisition, loss, psychological reality, functional applications (pp. 151–176). John Benjamins. DOI logoGoogle Scholar
Van Lancker Sidtis, D. (2012). Two-track mind: Formulaic and novel language support a dual-process model. In M. Faust (Ed.), The handbook of the neuropsychology of language: Vol. 1, Language processing in the brain: Basic science, Vol. 2. Language processing in the brain: Clinical populations (pp. 342–367). Wiley Blackwell. DOI logoGoogle Scholar
Van Lancker Sidtis, D., Kougentakis, K., Cameron, K., Falconer, C., & Sidtis, J. (2012). “Down with ___”: The linguistic schema as intermediary between formulaic and novel expressions. Yearbook of Phraseology, 3(1), 87–108. DOI logoGoogle Scholar
Van Lancker Sidtis, D., & Postman, W. A. (2006). Formulaic expressions in spontaneous speech of left- and right-hemisphere-damaged subjects. Aphasiology, 20(5), 411–426. DOI logoGoogle Scholar
VanPatten, B. (2007). Input processing in adult second language acquisition. In B. VanPatten & J. Williams (Eds.), Theories in second language acquisition: An introduction (pp. 115–135). Lawrence Erlbaum Associates.Google Scholar
VanPatten, B., & Jegerski, J. (Eds.) (2010). Research in second language processing and parsing. John Benjamins. DOI logoGoogle Scholar
VanPatten, B., Smith, M., & Benati, A. (2019). Key questions in second language acquisition. Cambridge University Press. DOI logoGoogle Scholar
Van Petten, C., Coulson, S., Rubin, S., Plante, E., & Parks, M. (1999). Time course of word identification and semantic integration in spoken language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(2), 394–417. DOI logoGoogle Scholar
Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176–190. DOI logoGoogle Scholar
Van Valin Jr., R. D., & LaPolla, R. J. (1997). Syntax: Structure, meaning, and function. Cambridge University Press. DOI logoGoogle Scholar
Vegas, R. A. M. (2022). Impacto del factor frecuencia en la didáctica de estructuras verbales preposicionales en español para sinohablantes. Porta Linguarum, 38, 1–26.Google Scholar
Verkuyl, H. J. (2005). Aspectual composition: Surveying the ingredients. In H. Verkuyl, H. de Swart & A. van Hout (Eds.), Perspectives on aspect (pp. 19–39). Springer. DOI logoGoogle Scholar
Verneau, M., van der Kamp, J., Savelsbergh, G. J., & de Looze, M. P. (2014). Age and time effects on implicit and explicit learning. Experimental aging research, 40(4), 477–511. DOI logoGoogle Scholar
Vogt, P., & Lieven, E. (2010). Verifying theories of language acquisition using computer models of language evolution. Adaptive Behavior, 18(1), 21–35. DOI logoGoogle Scholar
Waterfall, H. R., Sandbank, B., Onnis, L., & Edelman, S. (2010). An empirical generative framework for computational modeling of language acquisition. Journal of Child Language, 37(3), 671–703. DOI logoGoogle Scholar
White, L. (2003). On the nature of interlanguage representation: Universal grammar in the second language. In C. Doughty & M. Long (Eds.), The handbook of second language acquisition (pp. 18–42). Wiley-Blackwell. DOI logoGoogle Scholar
Wilmut, I., Sullivan, G., & Chambers, I. (2011). The evolving biology of cell reprogramming. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 366(1575), 2183–2197. DOI logoGoogle Scholar
Wittenberg, E., Paczynski, M., Wiese, H., Jackendoff, R., & Kuperberg, G. (2014). The difference between “giving a rose“ and “giving a kiss“: Sustained neural activity to the light verb construction. Journal of Memory and Language, 73, 31–42. DOI logoGoogle Scholar
Wlotko, E. W., & Federmeier, K. D. (2012). So that’s what you meant! Event-related potentials reveal multiple aspects of context use during construction of message-level meaning. NeuroImage, 62(1), 356–366. DOI logoGoogle Scholar
Wolter, B., & Yamashita, J. (2018). Word frequency, collocational frequency, L1 congruency, and proficiency in l2 collocational processing: What accounts for L2 performance? Studies in Second Language Acquisition, 40(2), 395–416. DOI logoGoogle Scholar
Wong, P. C., Ettlinger, M., & Zheng, J. (2013). Linguistic grammar learning and DRD2-TAQ-IA polymorphism. PloS one, 8(5), Article e64983. DOI logoGoogle Scholar
Wood, C., & Connelly, V. (Eds.). (2009). Contemporary perspectives on reading and spelling. Routledge. DOI logoGoogle Scholar
Wray, A. (2000). Formulaic sequences in second language teaching: Principle and practice. Applied Linguistics, 21, (4), 463–489, DOI logoGoogle Scholar
Wulff, S., Ellis, N. C., Römer, U., Bardovi–Harlig, K., & Leblanc, C. J. (2009). The acquisition of tense–aspect: Converging evidence from corpora and telicity ratings. The Modern Language Journal, 93(3), 354–369. DOI logoGoogle Scholar
Xiang, M., & Kuperberg, G. (2015). Reversing expectations during discourse comprehension. Language, Cognition and Neuroscience, 30(6), 648–672. DOI logoGoogle Scholar
Yang, C. (2002). Knowledge and learning in natural language. Oxford University Press.Google Scholar
(2004). Universal Grammar, statistics or both? Trends in Cognitive Sciences, 8(10), 451–456. DOI logoGoogle Scholar
(2005). On productivity. Linguistic Variation Yearbook, 5, 333–370. DOI logoGoogle Scholar
(2008). The great number crunch. Journal of Linguistics 44, 205–228. DOI logoGoogle Scholar
(2011a). Computational models of syntactic acquisition. WIREs Cognitive Science, 3(2), 205–213. DOI logoGoogle Scholar
(2011b). A statistical test for grammar. Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics (pp. 30–38). [URL]
(2013). Who’s afraid of George Kingsley Zipf? Or: Do children and chimps have language? Significance, 10(6), 29–34. DOI logoGoogle Scholar
(2016). The price of linguistic productivity: How children learn to break the rules of language. The MIT Press. DOI logoGoogle Scholar
Yang, C., Crain, S., Berwick, R. C., Chomsky, N., & Bolhuis, J. J. (2017). The growth of language: Universal Grammar, experience, and principles of computation. Neuroscience and Biobehavioral Reviews, 81(Pt B), 103–119. DOI logoGoogle Scholar
Yang, C., & Roeper, T. (2011). Minimalism and language acquisition. In C. Boeckx (Ed.), The Oxford handbook of linguistic minimalism (pp. 551–573). Oxford University Press. DOI logoGoogle Scholar
Yano, M., & Koizumi, M. (2021). The role of discourse in long-distance dependency formation. Language, Cognition and Neuroscience, 36(6), 711–729. DOI logoGoogle Scholar