Article published in:
Cognitive Individual Differences in Second Language Processing and Acquisition
Edited by Gisela Granena, Daniel O. Jackson and Yucel Yilmaz
[Bilingual Processing and Acquisition 3] 2016
► pp. 131156
Baddeley, A. D.
(2003) Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839. CrossrefGoogle Scholar
Balkwill, L.-L., & Thompson, W. F.
(1999) A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception, 17(1), 43–64. CrossrefGoogle Scholar
Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B.
(2000) Voice-selective areas in human auditory cortex. Nature, 403, 309–312. CrossrefGoogle Scholar
Christiner, M., & Reiterer, S.
(2013) Song and speech: Examining the link between singing talent and speech imitation ability. Frontiers in Psychology, 4, 1–11. CrossrefGoogle Scholar
Colton, R., Casper, J., & Leonard, R.
(2006) Understanding voice problems: A physiological perspective for diagnosis and treatment. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Darwin, C.
(1871) The descent of man, and selection in relation to sex (Vol. 2). London, UK: John Murray. CrossrefGoogle Scholar
Das, T., Singh, L., & Singh, N. C.
(2007) Rhythmic structure of Hindi and English: New insights from a computational analysis. Progress in Brain Research, 168, 207–214. CrossrefGoogle Scholar
Dörnyei, Z., & Taguchi, T.
(2010) Questionnaires in second language research: Construction, administration, and processing (2nd ed.). London, UK: Routledge.Google Scholar
Ekholm, E., Papagiannis, G. C., & Chagnon, F. P.
(1998) Relating objective measurements to expert evaluation of voice quality in western classical singing: critical perceptual parameters. Journal of Voice, 12(2), 182–196. CrossrefGoogle Scholar
Fonseca-Mora, C., Jara-Jiménez, P., & Gómez-Domínguez, M.
(2015) Musical plus phonological input for young foreign language readers. Frontiers in Psychology, 6, 1–9. CrossrefGoogle Scholar
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., & Turner, R. et al.
(2009) Universal recognition of three basic emotions in music. Current Biology, 19, 573–576. CrossrefGoogle Scholar
García-López, I., & Gavilán Bouzas, J.
(2010) The singing voice. Acta Otorrinolaringológica Española , 61(6), 441–451. CrossrefGoogle Scholar
Gaser, C., & Schlaug, G.
(2003) Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240–9245.Google Scholar
Gordon, E. E.
(1989) Advanced measures of music audiation. Chicago, IL: GIA.Google Scholar
Grabe, E., & Low, E. L.
(2002) Durational variability in speech and the rhythm class hypothesis. In C. Gussenhoven & N. Warner (Eds.), Laboratory Phonology 7 (pp. 515–546). Berlin, Germany: Mouton de Gruyter.Google Scholar
Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G.
(2011) Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, 1–9. CrossrefGoogle Scholar
Hu, X., Ackermann, H., Martin, J. A., Erb, M., Winkler, S., & Reiterer, S.
(2013) Language aptitude for pronunciation in advanced second language (L2) learners: Behavioural predictors and neural substrates. Brain & Language, 127(3), 366–376. CrossrefGoogle Scholar
Iverson, J. M.
(2010) Developing language in a developing body: The relationship between motor development and language development. Journal of Child Language, 37(2), 229–261. CrossrefGoogle Scholar
Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M.
(2010) The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20(5), 1144–1152. CrossrefGoogle Scholar
Kuhl, P. K.
(2004) Early language acquisition: Cracking the speech code. Nature Reviews, Neuroscience, 5, 831–843. CrossrefGoogle Scholar
Levman, B. G.
(1992) The genesis of music and language. Ethnomusicology, 36(2), 147–170. CrossrefGoogle Scholar
Liberman, A. M., & Mattingly, I. G.
(1985) The motor theory of speech perception revised. Cognition, 21, 1–36. CrossrefGoogle Scholar
Liégeois-Chauvel, C., de Graaf, J. B., Laguitton, V., & Chauvel, P.
(1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cerebral Cortex, 9(5), 484–496. CrossrefGoogle Scholar
Limb, C. J.
(2006) Structural and functional neural correlates of music perception. Anatomical Record A, 288A(4), 435–446. CrossrefGoogle Scholar
Livingstone, F. B.
(1973) Did the australopithecines sing? Current Anthropology, 14(1/2), 25–29. CrossrefGoogle Scholar
López-Barroso, D., Catani, M., Ripollés, P., Dell’Acqua, F., Rodríguez-Fornells, A., & de Diego-Balaguer, R.
(2013) Word learning is mediated by the left arcuate fasciculus. Proceedings of the National Academy of Sciences, 110(32), 13168–13173. CrossrefGoogle Scholar
McMullen, E., & Saffran, J. R.
(2004) Music and language: A developmental comparison. Music Perception, 21(3), 289–311. CrossrefGoogle Scholar
Meyer, M., Alter, K., Friederici, A. D., Lohmann, G., & von Cramon, Y. D.
(2002) fMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Human Brain Mapping 17, 73–88. CrossrefGoogle Scholar
Miller, G. F.
(2000) Evolution of human music through sexual selection. In N. L. Wallin, B. Merker & S. Brown (Eds.), The origins of music (pp. 329–360). Cambridge, MA: The MIT Press.Google Scholar
Milovanov, R.
(2009) Musical aptitude and foreign language learning skills: Neural and behavioural evidence about their connections. Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009), 338–342.Google Scholar
Mithen, S.
(2006) Ethnobiology and the evolution of the human mind. Journal of the Royal Anthropological Institute, 12(Issue Supplement 1), S45–S61. CrossrefGoogle Scholar
Moreno, S., Bialystok, E., Barac, R., Schellenberg, G. E., Cepeda, N. J., & Chau, T.
(2011) Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. CrossrefGoogle Scholar
Murphey, T.
(1990) The song stuck in my head phenomenon: A melodic din in the lad? System, 18(1), 53–64. CrossrefGoogle Scholar
Nardo, D., & Reiterer, S.
(2009) Musicality and phonetic language aptitude. In G. Dogil & S. Reiterer (Eds.), Language talent and brain activity (pp. 213–256). Berlin: Mouton de Gruyter.Google Scholar
Nasir, S. M., & Ostry, D. J.
(2008) Speech motor learning in profoundly deaf adults. Nature Neuroscience, 11(10), 1217–1222. CrossrefGoogle Scholar
(2009) Auditory plasticity and speech motor learning. Proceedings of the National Academy of Sciences, 106(48), 20470–20475. CrossrefGoogle Scholar
Norton, A., Zipse, L., Marchina, S., & Schlaug, G.
(2009) Melodic intonation therapy: Shared insights on how it is done and why it might help. Annals of the New York Academy of Sciences, 1169, 431–436. CrossrefGoogle Scholar
Omori, K., Kacker, A., Carroll, L. M., Riley, W. D., & Blaugrund, S. M.
(1996) Singing power ratio: Quantitative evaluation of singing voice quality. J Voice, 10(3), 228–235. CrossrefGoogle Scholar
Oechslin, M. S., Meyer, M., & Jäncke, L.
(2010) Absolute pitch—functional evidence of speech-relevant auditory acuity. Cerebral Cortex 20, 447–455. CrossrefGoogle Scholar
Özdemir, E., Norton, A., & Schlaug, G.
(2006) Shared and distinct neural correlates of singing and speaking. NeuroImage, 33(2), 628–635. CrossrefGoogle Scholar
Pastuszek-Lipinska, B.
(2004) An overview of a research project and preliminary results of two experiments on perception and production of foreign language sounds by musicians and non-musicians. TMH-QPSR, 46(1), 61–74.Google Scholar
Patel, A.D.
(2008) Music, language and the brian. Oxford: Oxford University PressGoogle Scholar
Pastuszek-Lipinska, B.
(2008) Influence of music education on second language acquisition. Proceedings of Acoustics ‘08 Paris, 5125–5130.Google Scholar
Patel, A. D.
(2008) Music, language, and the brain. Oxford: Oxford University Press.Google Scholar
Perkins, J. M., Baran, J. A., & Gandour, J.
(1996) Hemispheric specialization in processing intonation contours. Aphasiology 10, 343–362. CrossrefGoogle Scholar
Ploog, K.
(1999) Voicecoaching. Bonn, Germany: Voggenreiter.Google Scholar
Polka, L.
(1991) Cross-language speech perception in adults: Phonemic, phonetic, and acoustic contributions. Journal of the Acoustical Society of America, 89(6), 2961–2977. CrossrefGoogle Scholar
Polka, L., Colantonio, C., & Sundara, M.
(2001) A cross-language comparison of /d/–/ð/ perception: Evidence for a new developmental pattern. Journal of the Acoustical Society of America, 109(5), 2190–2201. CrossrefGoogle Scholar
Reiterer, S., Hu, X., Erb, M., Rota, G., Nardo, D., & Grodd, W. et al.
(2011) Individual differences in audio-vocal accent imitation aptitude in late bilinguals: Functional neuro-imaging and brain morphology. Frontiers in Psychology, 2, 1–12. CrossrefGoogle Scholar
Reiterer, S., Hu, X., Sumathi, T., & Singh, N. C.
(2013) Are you a good mimic? Neuro-acoustic signatures for speech imitation ability. Frontiers in Psychology, 4, 1–13. CrossrefGoogle Scholar
Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., & Preuss, T. M.
(2012) Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evoluntionary Neuroscience, 3, 1–6.Google Scholar
Schlaug, G., Marchina, S., & Norton, A.
(2009) Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385–394. CrossrefGoogle Scholar
Schneider, P., Scherg, M., Dosch, G. H., Specht, H. J., Gutschalk, A., & Rupp, A.
(2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–694. CrossrefGoogle Scholar
Schneider, P., Sluming, V., Roberts, N., Bleeck, S., & Rupp, A.
(2005) Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Annals of the New York Academy of Sciences, 1060, 387–394. CrossrefGoogle Scholar
Schön, D., Magne, C., & Besson, M.
(2004) The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341–349. CrossrefGoogle Scholar
Schulze, K., & Koelsch, S.
(2012) Working memory for speech and music. Annals of the New York Academy of Sciences, 1252, 229–236. CrossrefGoogle Scholar
Schulze, K., Vargha-Khadem, F., & Mishkin, M.
(2012) Test of a motor theory of long-term auditory memory. Proceedings of the National Academy of Sciences, 109(18), 7121–7125. CrossrefGoogle Scholar
Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S.
(2011) Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771–783. CrossrefGoogle Scholar
Seither-Preisler, A., Parncutt, R., & Schneider, P.
(2014) Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. The Journal of Neuroscience, 34, 10937–10949. CrossrefGoogle Scholar
Stahl, B., Kotz, S. A., Henseler, I., Turner, R., & Geyer, S.
(2011) Rhythm in disguise: Why singing may not hold the key to recovery from aphasia. Brain, 134(10), 3083–3093. CrossrefGoogle Scholar
Tees, R. C., & Werker, J. F.
(1984) Perceptual flexibility: Maintenance or recovery of the ability to discriminate non-native speech sounds. Canadian Journal of Psychology, 38(4), 579–590. CrossrefGoogle Scholar
Thompson, W. F., Schellenberg, G. E., & Husain, G.
(2004) Decoding speech prosody: Do music lessons help? Emotion, 4(1), 46–64. CrossrefGoogle Scholar
Trofimovich, P., & Baker, W.
(2006) Learning second language suprasegmentals: Effect of L2 experience on prosody and fluency characteristics of L2 speech. Studies in Second Language Acquisition, 28(1), 1–30. CrossrefGoogle Scholar
Wechsler, D.
(1939) The measurement of adult intelligence. Baltimore, MD: Williams & Wilkins. CrossrefGoogle Scholar
Werker, J. F., & Tees, R. C.
(2005) Speech perception as a window for understanding plasticity and commitment in language systems of the brain. Developmental Psychobiology, 46(3), 233–251. CrossrefGoogle Scholar
Werker, J. F., Gilbert, J. H. V., Humphrey, K., & Tees, R. C.
(1981) Developmental aspects of cross-language speech perception. Child Development, 52(1), 349–355. CrossrefGoogle Scholar
Williamson, V. J., Baddeley, A. D., & Hitch, G. J.
(2010) Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory & Cognition, 38(2), 163–175. CrossrefGoogle Scholar
Wong, P. C. M., & Perrachione, T. K.
(2007) Learning pitch patterns in lexical identification by native english-speaking adults. Applied Psycholinguistics, 28(4), 565–585. CrossrefGoogle Scholar
Wray, A.
(2005) The explanatory advantages of the holistic protolanguage model: The case of linguistic irregularity. Behavioral and Brain Sciences, 28(2), 147–148. CrossrefGoogle Scholar
Zatorre, R. J., Belin, P., & Penhune, V. B.
(2002) Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences 6, 37–46. CrossrefGoogle Scholar
Cited by

Cited by 2 other publications

Christiner, Markus
2018.  In Exploring Language Aptitude: Views from Psychology, the Language Sciences, and Cognitive Neuroscience [English Language Education, 16],  pp. 149 ff. Crossref logo
Christiner, Markus, Stefanie Rüdegger & Susanne Maria Reiterer
2018. Sing Chinese and tap Tagalog? Predicting individual differences in musical and phonetic aptitude using language families differing by sound-typology. International Journal of Multilingualism 15:4  pp. 455 ff. Crossref logo

This list is based on CrossRef data as of 25 may 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.