Part of
Language and Text: Data, models, information and applications
Edited by Adam Pawłowski, Jan Mačutek, Sheila Embleton and George Mikros
[Current Issues in Linguistic Theory 356] 2021
► pp. 163176
References (32)
References
Azpiazu, Ion Madrazo & Maria Soledad Pera. 2019. Multiattentive recurrent neural network architecture for multilingual readability assessment. Transactions of the Association for Computational Linguistics 7. 421–436. DOI logoGoogle Scholar
Breiman, Leo. 2001. Random forests. Machine Learning 45(1). 5–32. DOI logoGoogle Scholar
Collins-Thompson, Kevyn & James P. Callan. 2004. A language modeling approach to predicting reading difficulty. Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, 193–200. Boston, MA: Association for Computational Linguistics.Google Scholar
Dale, Edgar & Jeanne S. Chall. 1948. A formula for predicting readability. Educational Research Bulletin 27(2). 37–54.Google Scholar
DuBay, William H. 2004. The principles of readability. Costa Mesa, CA: Impact Information.Google Scholar
Flesch, Rudolf. 1948. A new readability yardstick. Journal of Applied Psychology 32. 221–233. DOI logoGoogle Scholar
François, Thomas & Cédrick Fairon. 2012. An “AI readability” formula for French as a foreign language. In Jun’ichi Tsujii, James Henderson & Marius Paşca (eds.), Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 466–477. Jeju Island, Korea: Association for Computational Linguistics.Google Scholar
Fry, Edward. 1968. A readability formula that saves time. Journal of Reading 11(7). 513–578.Google Scholar
Graesser, Arthur C., Danielle S. McNamara, Max M. Louwerse & Zhiqiang Cai. 2004. Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers 36(2). 193–202. DOI logoGoogle Scholar
Gunning, Robert. 1952. The technique of clear writing. New York: McGraw-Hill.Google Scholar
Hirsch, Jorge E. 2005. An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America 102(46). 16569–16572. DOI logoGoogle Scholar
Kho, Julia. 2018 October 19. Why random forest is my favorite machine learning model. Towards Data Science. Retrieved 5 September 2020, from [URL]
Kincaid, Peter J., Robert P. Fishburne Jr., Richard L. Rogers & Brad S. Chissom. 1975. Derivation of new readability formulas (Automated Readability Index, Fog Count, and Flesch Reading Ease Formula) for Navy enlisted personnel. Millington, TN: Chief of Naval Technical Training Naval Air Station Memphis. DOI logoGoogle Scholar
Koehrsen, Will. 2018 August 30. An implementation and explanation of the random forest in Python. Towards Data Science. Retrieved 5 September 2020, from [URL]
Kubát, Miroslav, Vladimír Matlach & Radek Čech. 2014. QUITA: Quantitative Index Text Analyzer. Lüdenscheid: RAM-Verlag.Google Scholar
Martinc, Matej, Senja Pollak & Marko Robnik Šikonja. 2018. Assessing readability with deep neural language models. Paper presented at the 2nd HBP Student Conference: Transdisciplinary Research Linking Neuroscience, Brain Medicine and Computer Science, Ljubljana, Slovenia, February 14–16.
McIntosh, Robert P. 1967. An index of diversity and the relation of certain concepts to diversity. Ecology 48(3). 392–404. DOI logoGoogle Scholar
McLaughlin, G. Harry. 1969. SMOG Grading – a new readability formula. Journal of Reading 12(8). 639–646.Google Scholar
Milone, Michael. 2014. Development of the ATOS® Readability Formula. Wisconsin Rapids, WI: Renaissance Learning, Inc.Google Scholar
Mohammadi, Hamid & Seyed Hossein Khasteh. 2019. Text as environment: A deep reinforcement learning text readability assessment model. arXiv preprint arXiv:1912.05957.Google Scholar
Oakes, Michael P. 1998. Statistics for corpus linguistics. Edinburgh: Edinburgh University Press.Google Scholar
Pitler, Emily & Ani Nenkova. 2008. Revisiting readability: A unified framework for predicting text quality. In Mirella Lapata & Hwee Tou Ng (eds.), Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 186–195. Honolulu, HI: Association for Computational Linguistics. DOI logoGoogle Scholar
Popescu, Ioan-Iovitz. 2007. The ranking by the weight of highly frequent words. In Peter Grzybek & Reinhard Köhler (eds.), Exact methods in the study of language and text, 555–565. Berlin: De Gruyter. DOI logoGoogle Scholar
Popescu, Ioan-Iovitz & Gabriel Altmann. 2007. Writer’s view of text generation. Glottometrics 15. 71–81.Google Scholar
Popescu, Ioan-Iovitz, Karl-Heinz Best & Gabriel Altmann. 2007. On the dynamics of word classes in text. Glottometrics 14. 58–71.Google Scholar
Popescu, Ioan-Iovitz, Gabriel Almann, Peter Grzybek, Bijapur D. Jayaram, Reinhard Köhler, Viktor Krupa, Ján Mačutek, Regina Pustet, Ludmila Uhlířová & Matummal N. Vidya. 2009a. Word frequency studies. Berlin: Mouton de Gruyter.Google Scholar
Popescu, Ioan-Iovitz, Ján Mačutek & Gabriel Altmann. 2009b. Aspects of word frequencies. Lüdenscheid: RAM-Verlag.Google Scholar
Popescu, Ioan-Iovitz, Ján Mačutek, Emmerich Kelih, Radek Čech, Karl-Heinz Best & Gabriel Altmann. 2010. Vectors and codes of text. Lüdenscheid: RAM-Verlag.Google Scholar
Schwarm, Sarah E. & Mari Ostendorf. 2005. Reading level assessment using support vector machines and statistical language models. In Kevin Knight, Hwee Tou Ng & Kemal Oflazer Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 523–530. Ann Arbor, MI: Association for Computational Linguistics. DOI logoGoogle Scholar
Tweedie, Fiona J. & Harald R. Baayen. 1998. How variable may a constant be? Measures of lexical richness in perspective. Computers and the Humanities 32(5). 323–352. DOI logoGoogle Scholar
Welling, Soeren H., Hanne H. F. Refsgaard, Per B. Brockhoff & Line H. Clemmensen. 2016. Forest floor visualizations of random forests. arXiv preprint arXiv:1605.09196.Google Scholar
Yule, George Udny. 1944. The statistical study of literary vocabulary. Cambridge: Cambridge University Press.Google Scholar