References
Al Saied, H., Candito, M., & Constant, M. (2019). Comparing
linear and neural models for competitive MWE
identification. Proceedings of the 22nd Nordic Conference on
Computational
Linguistics (pp. 86–96). [URL]
Alegria, I., Ansa, O., Artola, X., Ezeiza, N., Gojenola, K., & Urizar, R. (2004). Representation
and treatment of multiword expressions in Basque. Proceedings of the Second ACL
Workshop on Multiword Expressions: Integrating
Processing (pp. 48–55). [URL].
Bargmann, S. & Sailer, M. (2018). The
syntactic flexibility of semantically non-decomposable
idioms. In M. Sailer & S. Markantonatou (Eds.), Multiword
expressions: Insights from a multi-lingual
perspective (pp. 1–29). Language Science Press.
Bejček, E., Straňák, P., & Pecina, P. (2013). Syntactic
identification of occurrences of multiword expressions in text using a lexicon with dependency
structures. Proc. of the 9th Workshop on Multiword
Expressions (pp. 106–115). [URL]
Belinkov, Y., & Bisk, Y. (2018). Synthetic
and natural noise both break neural machine
translation. ArXiv. [URL]
Bentivogli, L., Bisazza, A., Cettolo, M., & Federico, M. (2016). Neural
versus phrase-based machine translation quality: A case
study. arXiv [URL].
Colson, J. -P. (2019). Multi-Word
units in machine translation: Why the tip of the iceberg remains problematic – and a tentative corpus-driven
solution. MUMTT 2019, the 4th Workshop on Multi-word Units in Machine
Translation and Translation Technology. [URL].
Constant, M., Eryiǧit, G., Monti, J., van der Plas, L., Ramisch, C., Rosner, M., & Todirascu, A. (2017). Multiword
expression processing: A survey. Computational
Linguistics, 43(4), 1–92.
Corpas Pastor, G. (2013). Detección, descripción y contraste de las unidades fraseológicas mediante tecnologías
lingüísticas. In I. Olza & E. Manero (Eds.) Fraseopragmática. Colección
Romanistik (pp. 335–373). Frank & Timme. [URL]
Derczynski, L., Ritter, A., Clark, S., & Bontcheva, K. (2013). Twitter
part-of-speech tagging for all: Overcoming sparse and noisy
data. In R. Mitkov, G. Angelova & K. Bontcheva (Eds.), Proceedings
of the International Conference on Recent Advances in Natural Language
Processing (pp. 198–206). INCOMA Ltd. [URL]
DILEA – Penadés Martínez, I. (2019). arrimar el hombro. En Diccionario de locuciones idiomáticas del español
actual. [URL]
DILEA – Penadés Martínez, I. (2019). poner los cuernos. En Diccionario de locuciones idiomáticas del español
actual. [URL]
DLE – Real Academia
Española (2022). dejarse
la piel. En Diccionario de la Lengua Española. [URL]
ELIS – European Language
Industry Survey (2018). 2018 Language Industry
Survey – Expectations and concerns of the European language industry. [URL]
ELIS – European Language
Industry Survey (2020). 2020 Language Industry
Survey – 2020 before & after COVID-19. [URL]
Fazly, A., Cook, P., & Stevenson, S. (2009). Unsupervised
type and token identification of idiomatic expressions. Computational
Linguistics 35(1), 61–103.
Finlayson, M., & Kulkarni, N. (2011). Detecting
multiword expressions improves word sense disambiguation. Proceedings of the
ALC Workshop on MWEs (MWE
2011) (pp. 20–24). [URL]
Foufi, V., Nerima, L., & Wehrli, E. (2019). Multilingual
parsing and MWE detection. In Y. Parmentier & J. Waszczuk (Eds.), Representation
and parsing of multiword expressions: Current
trends (pp. 217–237). Language Science Press. [URL]
Gui, T., Zhang, Q., Huang, H., Peng, M., & Huang, X. (2017). Part-of-speech
tagging for twitter with adversarial neural
networks. In M. Palmer, R. Hwa & S. Riedel (Eds.), Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing (pp. 2411–2420). Association for Computational Linguistics. .
Hidalgo-Ternero, C. M. (2020). Google
Translate vs. DeepL: analysing neural machine translation performance under the challenge of phraseological
variation. In P. Mogorrón Huerta (Ed.), Análisis multidisciplinar del fenómeno de la variación en traducción e
interpretación / Multidisciplinary Analysis of the Phenomenon of
Phraseological Variation in Translation and Interpreting. MonTI Special Issue
6 (pp. 154–177).
Hidalgo-Ternero, C. M. (2021). El algoritmo ReGap para la mejora de la traducción automática neuronal de expresiones
pluriverbales discontinuas (FR>EN/ES). In G. Corpas Pastor, M. R. Bautista Zambrana & C. M. Hidalgo-Ternero (Eds.), Sistemas fraseológicos en contraste: enfoques computacionales y de
corpus (pp. 253–270). Comares.
Hidalgo-Ternero, C. M., & Corpas Pastor, G. (2020). Bridging
the ‘gApp’: improving neural machine translation systems for multiword expression
detection. Yearbook of
Phraseology, 11, 61–80.
Hidalgo-Ternero C. M., & Corpas Pastor, G. (2024/forthcoming). Qué se traerá gApp entre manos … O cómo mejorar la traducción automática
neuronal de variantes somáticas
(ES>EN/DE/FR/IT/PT). In M. Seghiri & M. Pérez Carrasco (Eds.), Nuevas tendencias en traducción e interpretación
especializadas. Peter Lang.
Hidalgo-Ternero, C. M. (2024/forthcoming). ¿DeepL, Google Translate o VIP? Qué sistema ofrece un mejor rendimiento en la traducción de
locuciones continuas y discontinuas. In G. Corpas Pastor & F. J. Veredas Navarro (eds.), Tecnologías lingüísticas multilingües: desarrollos actuales y transición
digital. Comares
Honnibal, M., & Montani, I. (2017). spaCy
2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental
parsing, 7.
Huang, P. S., Wang, C., Huang, S., Zhou, D., & Deng, L. (2018). Towards
neural phrase-based machine translation. arXiv preprint
arXiv:1706.05565. [URL]
Junczys-Dowmunt, M., Dwojak, T., & Hoang, H. (2016). Is
neural machine translation ready for deployment? A case study on 30 translation
directions. Arxiv. [URL]
Kilgarriff, A., Rychly, P., Smrz, P., & Tugwell, D. (2004). The
sketch engine. Proceedings of the 11th EURALEX International
Congress (pp. 105–116).
Klyueva, N., Doucet, A., & Straka M. (2017). Neural
networks for multi-word expression detection. Proceedings of the 13th
Workshop on Multiword Expressions (MWE
2017) (pp. 60–65).
Lohar, P., Popović, M., Alfi, H., & Way, A. (2019). A
systematic comparison between SMT and NMT on translating user-generated
content. 20th International Conference on Computational
Linguistics and Intelligent Text Processing (CICLing 2019).
Maldonado, A., Han, L., Moreau, E., Alsulaimani, A., Chowdhury, K. D., Vogel, C., & Liu, Q. (2017). Detection
of verbal multi-word expressions via conditional random fields with syntactic dependency features and semantic
re-ranking. Proceedings of the 13th Workshop on Multiword Expressions (MWE
2017) (pp. 114–120).
Martínez Alonso, H., & Zeman, D. (2016). Universal
dependencies for the AnCora treebanks. Procesamiento del Lenguaje
Natural,
[S.l.], 57, 91–98. ISSN
1989-7553. [URL]
Moreau, E., Alsulaimani, A., Maldonado, A., & Vogel, C. (2018). CRF-Seq
and CRFDepTree at PARSEME Shared Task 2018: Detecting verbal MWEs using sequential and dependency-based
approaches. Proceedings of the Joint Workshop on Linguistic Annotation,
Multiword Expressions and Constructions
(LAW-MWE‑CxG-2018) (pp. 241–247).
Nagy, T., & Vincze, V. (2014). VPCTagger:
Detecting verb-particle constructions with syntax-based methods. Proceedings of
the 10th Workshop on Multiword Expressions (MWE 2014). Association for Computational Linguistics.
Neunerdt, M., Trevisan, B., Reyer, M., & Mathar, R. (2013). Part-of-speech
tagging for social media texts. In I. Gurevych, C. Biemann & T. Zesch (Eds.), Language
processing and knowledge in the web. Lecture Notes in Computer Science
8105 (pp. 139–150). Springer.
Nothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2017). Learning
multilingual named entity recognition from
Wikipedia. figshare. Dataset.
Parra Escartín, C., Nevado Llopis, A., & Sánchez Martínez, E. (2018). Spanish
multiword expressions: Looking for a
taxonomy. In M. Sailer & S. Markantonatou (Eds.), Multiword
expressions: Insights from a multi-lingual
perspective (pp. 271–323). Language Science Press.
Ramisch, C. (2015). Multiword
Expressions Acquisition: A Generic and Open Framework. Theory and
Applications of Natural Language Processing series
XIV. Springer. ISBN
978-3-319-09206-5.
Ramisch, C., & Villavicencio, A. (2018). Computational
treatment of multiword expressions. In R. Mitkov (Ed.), Oxford
Handbook on Computational Linguistics (2ª ed).
Ramisch, C., Cordeiro, S. R., Savary, A., Vincze, V., Barbu Mititelu, V., Bhatia, A., Buljan, M., Candito, M., Gantar, P., Giouli, V., Güngör, T., Hawwari, A., Iñurrieta, U., Kovalevskaitė, J., Krek, S., Lichte, S., Liebeskind, C., Monti, J., Parra Escartín, C., …, & Walsh, A. (2018). Edition
1.1 of the PARSEME Shared Task on automatic identification of verbal multiword
expressions. Proceedings of the Joint Workshop on Linguistic Annotation,
Multiword Expressions and Constructions
(LAW-MWE‑CxG-2018), (pp. 222–240). [URL]
Riedl, M., & Biemann, C. (2016). Impact
of MWE resources on multiword recognition. Proc. of the ACL 2016 Workshop on
MWEs (pp. 107–111).
Rikters, M., & Bojar, O. (2017). Paying
attention to multi-word expressions in neural machine translation. arXiv
preprint arXiv:1710.06313.
Rohanian, O., Taslimipoor, S., Kouchaki, S., An Ha, L., & Mitkov, R. (2019). Bridging
the gap: Attending to discontinuity in identification of multiword
expressions. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies
1 (pp. 2692–2698).
Schneider, N., Danchik, E., Dyer, C., & Smith, N. A. (2014). Discriminative
lexical semantic segmentation with gaps: Running the MWE gamut. TACL, 2, 193–206.
Shterionov, D., Superbo, R., Nagle, P., Casanellas, L. O, O’Dowd, T., & Way, A. (2018). Human
versus automatic quality evaluation of NMT and PBSMT. Machine
Translation, 32, 217–235.
Wang, X., Tu, Z., Xiong, D., & Zhang, M. (2017). Translating
phrases in neural machine translation. Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing (EMNLP
2017) (pp. 1421–1431).
Wang, H., Wu, H. He, Z., Huang, L., & Church, K. W. (2022). Progress
in machine translation. Engineering. (online
first, 14 July 2021). [URL]
Wyrwoll, C. (2014). User-Generated
content. Social
Media, 11–45.
Zampieri, N., Ramisch, C., & Damnati, G. (2019). The
impact of word representations on sequential neural MWE identification. Joint
Workshop on Multiword Expressions and WordNet (MWE‑WN
2019) (pp. 169–175).
Zaninello, A., & Birch, A. (2020). Multiword
expression aware neural machine translation. Proceedings of the 12th
Conference on Language Resources and Evaluation (LREC
2020) (pp. 3816–3825). [URL]