Article published In:
Demystifying New Methods in Historical Linguistics
Edited by Erich Round
[Diachronica 41:3] 2024
► pp. 414435
References (31)
References
Al-Ghezi, Ragheb & Mikko Kurimo. 2020. Graph-based syntactic word embeddings. In Dmitry Ustalov, Swapna Somasundaran, Alexander Panchenko, Fragkiskos D. Malliaros, Ioana Hulpuș, Peter Jansen & Abhik Jana (eds.), Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs), 72–78. DOI logoGoogle Scholar
Bamman, David & Gregory Crane. 2011. The Ancient Greek and Latin dependency treebanks. In Caroline Sporleder, Antal van den Bosch & Kalliopi Zervanou (eds.), Language technology for cultural heritage: Selected papers from the LaTeCH [Language Technology for Cultural Heritage] workshop series (Theory and Applications of Natural Language Processing), 79–98. Berlin & Heidelberg: Springer. DOI logoGoogle Scholar
Bianchi, Federico, Valerio Di Carlo, Paolo Nicoli & Matteo Palmonari. 2020. Compass-aligned distributional embeddings for studying semantic differences across corpora. ArXiv. [URL]. (24 August, 2023.)
Boschetti, Federico. 2009. A corpus-based approach to philological issues. Trento, Italy: University of Trento thesis.
Boschetti, Federico, Riccardo Del Gratta & Harry Diakoff. 2016. Open Ancient Greek WordNet 0.5’. Pisa: ILC-CNR for CLARIN-IT repository hosted at Institute for Computational Linguistics “A. Zampolli”, National Research Council, in Pisa. [URL]. (24 August, 2023.)
Di Carlo, Valerio, Federico Bianchi & Matteo Palmonari. 2019. Training temporal word embeddings with a compass. AAAI-19 [Association for the Advancement of Artificial Intelligence] Conference on Artificial Intelligence, 33(1). 6326–6334. DOI logoGoogle Scholar
Gorman, Vanessa B. 2020. Dependency treebanks of Ancient Greek prose. Journal of Open Humanities Data 6(1). DOI logoGoogle Scholar
Grover, Aditya & Jure Leskovec. 2016. Node2vec: Scalable feature learning for networks. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu Aggarwal, Dou Shen & Rajeev Rastogi (eds.), Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), 855–864. DOI logoGoogle Scholar
Gulordava, Kristina & Marco Baroni. 2011. A distributional similarity approach to the detection of semantic change in the Google Books Ngram corpus. In Sebastian Pado & Yves Peirsman (eds.), Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, 67–71.Google Scholar
Hamilton, William L., Jure Leskovec & Dan Jurafsky. 2016. Diachronic word embeddings reveal statistical laws of semantic change. In Katrin Erk & Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics [ACL], 1489–1501. Berlin: Association for Computational Linguistics. DOI logoGoogle Scholar
Harris, Zellig S. 1954. Distributional structure. Word 10(2–3). 146–162. DOI logoGoogle Scholar
Haug, Dag T. T. & Marius L. Jøhndal. 2008. Creating a parallel treebank of the Old Indo-European Bible translations. In Caroline Sporleder, Antal van den Bosch & Claire Grover (eds.), Proceedings of the Second Workshop on Language Technology for Cultural Heritage Data (LaTeCH), 27–34.Google Scholar
Kaiser, Jens, Sinan Kurtyigit, Serge Kotchourko & Dominik Schlechtweg. 2021. Effects of pre- and post-processing on type-based embeddings in lexical semantic change detection. In Paola Merlo, Jorg Tiedemann & Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics [EACL], 125–137. DOI logoGoogle Scholar
Keersmaekers, Alek, Wouter Mercelis, Colin Swaelens & Toon Van Hal. 2019. Creating, enriching and valorizing treebanks of Ancient Greek. In Marie Candito, Kilian Evang, Stephan Oepen & Djamé Seddah (eds.), Proceedings of the 18th International Workshop on Treebanks and Linguistic Theories (TLT, SyntaxFest 2019), 109–117. DOI logoGoogle Scholar
Kozlowski, Austin C., Matt Taddy & James A. Evans. 2019. The geometry of culture: Analyzing the meanings of class through word embeddings. American Sociological Review 84(5). 905–949. DOI logoGoogle Scholar
Kulkarni, Vivek, Rami Al-Rfou, Bryan Perozzi & Steven Skiena. 2015. Statistically significant detection of linguistic change. In Aldo Gangemi, Stefano Leonardi & Alessandro Panconesi (eds.), WWW ’15: Proceedings of the 24th International World Wide Web Conference, 625–635. New York: Association for Computing Machinery. DOI logoGoogle Scholar
Lenci, Alessandro & Magnus Sahlgren. 2023. Distributional semantics (Studies in Natural Language Processing). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Levy, Omer & Yoav Goldberg. 2014. Dependency-based word embeddings. In Kristina Toutanova & Hua Wu (eds.), Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 302–308. Baltimore: Association for Computational Linguistics. DOI logoGoogle Scholar
McGillivray, Barbara. 2014. Methods in Latin computational linguistics. Leiden: Brill. DOI logoGoogle Scholar
. 2022. How to use word embeddings for Natural Language Processing. SAGE Publications Ltd. DOI logo (24 August, 2023.)Google Scholar
Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. ArXiv. [URL]. (24 August, 2023.)
Perrone, Valerio, Marco Palma, Simon Hengchen, Alessandro Vatri, Jim Q. Smith & Barbara McGillivray. 2019. GASC: Genre-aware semantic change for Ancient Greek. In Nina Tahmasebi, Lars Borin, Adam Jatowt & Yang Xu (eds.), Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change, 56–66. DOI logoGoogle Scholar
Perrone, Valerio, Simon Hengchen, Marco Palma, Alessandro Vatri, Jim Q. Smith & Barbara McGillivray. 2021. Lexical semantic change for Ancient Greek and Latin. In Tahmasebi, Nina, Lars Borin, Adam Jatowt, Yang Xu & Simon Hengchen (eds.), Computational approaches to semantic change (Language Variation 6), 287–310. Berlin: Language Science Press.Google Scholar
Rodda, Martina A., Marco S. G. Senaldi & Alessandro Lenci. 2017. Panta rei: Tracking semantic change with distributional semantics in Ancient Greek. Italian Journal of Computational Linguistics 3(1). 11–24. DOI logoGoogle Scholar
Rodda, Martina A., Philomen Probert & Barbara McGillivray. 2019. Vector space models of Ancient Greek word meaning, and a case study on Homer. TAL Traitement Automatique des Langues 60(3). 63–87.Google Scholar
Sandhan, Jivnesh, Om Adideva Paranjay, Komal Digumarthi, Laxmidhar Behra & Pawan Goyal. 2023. Evaluating neural word embeddings for Sanskrit. In Amba Kulkarni & Oliver Hellwig (eds.), Proceedings of the Computational Sanskrit & Digital Humanities: Selected papers presented at the 18th World Sanskrit Conference, 21–37. Canberra: Association for Computational Linguistics.Google Scholar
Sprugnoli, Rachele, Giovanni Moretti & Marco Passarotti. 2020. Building and comparing lemma embeddings for Latin: Classical Latin versus Thomas Aquinas. IJCoL. Italian Journal of Computational Linguistics 6(6–1). 29–45. DOI logoGoogle Scholar
Stopponi, Silvia, Saskia Peels-Matthey & Malvina Nissim. 2024. AGREE: A new benchmark for the evaluation of distributional semantic models of Ancient Greek. Digital Scholarship in the Humanities. DOI logo (26 January, 2024.)Google Scholar
Vatri, Alessandro & Barbara McGillivray. 2018. The Diorisis Ancient Greek corpus. Research Data Journal for the Humanities and Social Sciences 3(1). 55–65. DOI logoGoogle Scholar
Vierros, Marja & Erik Henriksson. 2021. PapyGreek treebanks: A dataset of linguistically annotated Greek documentary papyri. Journal of Open Humanities Data 71. DOI logoGoogle Scholar
Tognini-Bonelli, Elena. 2001. Corpus linguistics at work. Amsterdam: John Benjamins. DOI logoGoogle Scholar