Commentary published In:
Biological Evolution: More than a metaphor for grammar change
Edited by Maria Rita Manzini
[Evolutionary Linguistic Theory 3:1] 2021
► pp. 5672
References (57)
References
Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
(2007). Working memory, thought, and action. Oxford: Oxford University Press. DOI logoGoogle Scholar
Balari, S., Benítez-Burraco, A., Camps, M., Longa, V. M., Lorenzo, G. & Uriagereka, J. (2011). The archaeological record speaks: Bridging anthropology and linguistics. International Journal of Evolutionary Biology, vol. 20111, 1–17. DOI logoGoogle Scholar
Balari, S., Benítez-Burraco, A., Longa, V. M. & Lorenzo, G. (2013). The fossils of language: What are they, who has them, how did they evolve? In C. Boeckx & K. K. Grohmann (Eds.), The Cambridge handbook of biolinguistics (pp. 489–523). New York: Cambridge University Press. DOI logoGoogle Scholar
Balari, S., Benítez-Burraco, A., Camps, M., Longa, V. M. & Lorenzo, G. (2018). My head’s in knots. On Uriagereka’s generalization and the knot-sentence connection. In Á. Gallego & R. Martin (Eds.), Language, syntax, and the natural sciences (pp. 269–294). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Balari, S. & Lorenzo, G. (2009). Computational phenotypes: Where the theory of computation meets Evo-Devo. Biolinguistics, 3(1), 2–60.Google Scholar
(2013). Computational phenotypes. Towards an evolutionary developmental biolinguistics. Oxford: Oxford University Press. DOI logoGoogle Scholar
Bateson, P. (2001). Behavioral development and Darwinian evolution. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingencies. Developmental systems and evolution (pp. 149–166). Cambridge, MA: The MIT Press.Google Scholar
Berwick, R. C. & Chomsky, N. (2016). Why only us. Language and evolution. Cambridge, MA: The MIT Press. DOI logoGoogle Scholar
Blumberg, M. S. (2005). Basic instinct. The genesis of behavior. New York: Thunder’s Mouth Press.Google Scholar
Botha, R. P. (2008). Prehistoric shell beads as a window on language evolution. Language and Communication, 281, 197–212. DOI logoGoogle Scholar
(2010). On the soundness of inferring modern language from symbolic behavior. Cambridge Archaeological Journal, 201, 345–356. DOI logoGoogle Scholar
Camps, M. & Uriagereka, J. (2006). The gordian knot of linguistic fossils. In J. Rosselló & J. Martín (Eds.), The biolinguistic turn. Issues on language and biology (pp. 34–65). Barcelona: Universitat de Barcelona.Google Scholar
Coolidge, F. L. & Wynn, T. (2004). A cognitive and neuropsychological perspective on the Châtelperronian. Journal of Anthropological Research, 601, 55–73. DOI logoGoogle Scholar
(2009). The rise of Homo sapiens. The evolution of modern thinking. Chichester: Wiley-Blackwell. DOI logoGoogle Scholar
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
Dennett, D. C. (1995). Darwin’s dangerous idea. Evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
Dixon, R. M. W. (2010). Basic linguistic theory. Vol. 1: Methodology. New York: Oxford University Press.Google Scholar
(2016). Are some languages better than others? New York: Oxford University Press. DOI logoGoogle Scholar
Donald, M. (1991). Origins of the modern mind. Three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
Griffiths, P. E. & Gray, R. D. (2001). Darwinism and developmental systems. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingencies. Developmental systems and evolution (pp. 195–218). Cambridge, MA: The MIT Press.Google Scholar
Heine, B. & Kuteva, T. (2007). The genesis of grammar. A reconstruction. Oxford: Oxford University Press.Google Scholar
Jablonka, E. & Lamb, M. J. (2005). Evolution in four dimensions. Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: The MIT Press.Google Scholar
Jablonka, E. & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84(2), 131–176. DOI logoGoogle Scholar
Johnston, T. D. & Edwards, L. (2002). Genes, interactions, and the development of behavior. Psychological Review, 1091, 26–34. DOI logoGoogle Scholar
Lass, R. (1997). Historical linguistics and language change. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Lieberman, P. (2000). Human language and our reptilian brain. The subcortical bases of speech, syntax, and thought. Cambridge, MA: Harvard University Press.Google Scholar
(2006). Toward an evolutionary biology of language. Cambridge, MA: Harvard University Press.Google Scholar
Lightfoot, D. (1999). The development of language. Acquisition, change, and evolution. Malden, MA: Blackwell.Google Scholar
(2006). How new languages emerge. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Longa, V. M. (2013a). The evolution of the faculty of language from a Chomskyan perspective: Bridging linguistics and biology. Journal of Anthropological Sciences, 911, 15–62.Google Scholar
(2013b). Un análisis computacional de las líneas prehistóricas: diseños geométricos y lenguaje. Zephyrus. Revista de Prehistoria y Arqueología, LXXI1, 15–43.Google Scholar
(2018). That was not ‘Lenneberg’s dream’. Historiographia Linguistica, 45(1/2), 179–209. DOI logoGoogle Scholar
(2019a). Adaptive plasticity. In T. K. Shackelford & V. A. Wickes-Shackelford (Eds.), Encyclopedia of Evolutionary Psychological Science. Berlin: Springer. DOI logoGoogle Scholar
(2019b). Making prehistoric lines speak: Inferring language and mental computations from ‘natural’ lines of parietal art. Philology. An International Journal on the Evolution of Languages, Cultures and Texts, 41, 243–278. DOI logoGoogle Scholar
Longa, V. M. & Lorenzo, G. (2012). Theoretical linguistics meets development: Explaining FL from an epigenecist point of view. In C. Boeckx, M. C. Horno-Chéliz & J. L. Mendívil-Giró (Eds.): Language, from a biological point of view. Current issues in biolinguistics (pp. 52–84). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
(2019). The study of instinct. In T. K. Shackelford & V. A. Wickes-Shackelford (Eds.), Encyclopedia of Evolutionary Psychological Science. Berlin: Springer. DOI logoGoogle Scholar
Lorenzo, G. & Longa, V. M. (2019). Development. In T. K. Shackelford & V. A. Wickes-Shackelford (Eds.), Encyclopedia of Evolutionary Psychological Science. Berlin: Springer. DOI logoGoogle Scholar
Mameli, M. & Bateson, P. (2006). Innateness and the sciences. Biology and Philosophy, 211, 155–188. DOI logoGoogle Scholar
Maynard-Smith, J. & Szathmáry, E. (1999). The origins of life: From the birth of life to the origin of language. New York: Oxford University Press.Google Scholar
Mendívil-Giró, J.-L. (2019). Did language evolve through language change? On language change, language evolution and grammaticalization theory. Glossa: A Journal of General Linguistics, 4(1), 1241, 1–30. DOI logoGoogle Scholar
Moore, D. S. (2001): The dependent gene. The fallacy of ‘nature vs. nurture’. New York: Henry Holt.Google Scholar
Oyama, S. (2000). The ontogeny of information. Developmental systems and evolution, 2nd ed. Durham, NC: Duke University Press. DOI logoGoogle Scholar
(2001). Terms in tension: What do you do when all the good words are taken? In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingencies. Developmental systems and evolution (pp. 177–193). Cambridge, MA: The MIT Press.Google Scholar
Piattelli-Palmarini, M. & Uriagereka, J. (2005). The evolution of the narrow faculty of language: The skeptical view and a reasonable conjecture. Lingue e Linguaggio, IV1, 27–79.Google Scholar
Russell, J. (1996). Development and evolution of the symbolic function: The role of working memory. In P. Mellars & K. Gibson (Eds.), Modelling the early human mind (pp. 159–170). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
Sampson, G. (2009). A linguistic axiom challenged. In G. Sampson, D. Gil & P. Trudgill (Eds.), Language Complexity as an Evolving Variable (pp. 1–18). New York: Oxford University Press.Google Scholar
Samuels, R. (2004). Innateness and cognitive science. Trends in Cognitive Sciences, 8(3), 136–141. DOI logoGoogle Scholar
Tremblay, P. & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain & Language, 1621, 60–71. DOI logoGoogle Scholar
Ullman, M. T. (2001). The declarative/procedural model of lexicon and grammar. Journal of Psycholinguistics Research, 30(1), 37–69. DOI logoGoogle Scholar
(2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 921, 231–270. DOI logoGoogle Scholar
Vanhaeren, M., d’Errico, F., Stringer, C., James, S. L., Todd, J. A. & Mienis, H. K. (2006). Middle Paleolithic shell beads in Israel and Algeria. Science, 3121, 1785–1788. DOI logoGoogle Scholar
West-Eberhard, M. (2003). Developmental plasticity and evolution. New York: Oxford University Press. DOI logoGoogle Scholar
Wynn, T. & Coolidge, F. L. (2004). The expert Neanderthal mind. Journal of Human Evolution, 461, 467–487. DOI logoGoogle Scholar
(2007). Did a small but significant enhancement in working-memory capacity power the evolution of modern thinking? In P. Mellars, K. Boyle, O. Bar-Yosef & C. Stringer (Eds.), Rethinking the human revolution: New behavioural and biological perspectives on the origin and dispersal of modern humans (pp. 79–90). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
(Eds.) (2010). Working memory: Beyond language and symbolism. Current Anthropology, 511, Supplement 1. DOI logoGoogle Scholar
(2012). How to think like a Neandertal. New York: Oxford University Press.Google Scholar