Part of
Perspectives on Abstract Concepts: Cognition, language and communication
Edited by Marianna Bolognesi and Gerard J. Steen
[Human Cognitive Processing 65] 2019
► pp. 1742
References
Arevalo, A. L., Baldo, J. V., & Dronkers, N. F.
2012What do brain lesions tell us about theories of embodied semantics and the human mirror neuron system? Cortex 48(2), 242–254. DOI logoGoogle Scholar
Aviezer, H., Hassin, R., Ryan, J., Grady, C., Susskind, J., Anderson, A., Moscovitch, M., & Bentin, S.
(2008) Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychol. Science 19(7), 724–732.DOI logoGoogle Scholar
Bak, T. H., O’Donovan, D. G., Xuereb, J. H., Boniface, S., & Hodges, J. R.
2001Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease–dementia–aphasia syndrome. Brain 124(1), 103–120. DOI logoGoogle Scholar
Barrós-Loscertales, A., González, J., Pulvermüller, F., Ventura-Campos, N., Bustamante, J. C., Costumero, V., & Ávila, C.
2012Reading salt activates gustatory brain regions: fMRI evidence for semantic grounding in a novel sensory modality. Cerebral Cortex 22(11), 2554–2563. DOI logoGoogle Scholar
Barsalou, L. W.
1999Perceptions of perceptual symbols. Behavioral and brain sciences 22(4), 637–660. DOI logoGoogle Scholar
Bienenstock, E. L., Cooper, L. N., & Munro, P. W.
1982Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience 2(1), 32–48 DOI logoGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L.
2009Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12), 2767–2796. DOI logoGoogle Scholar
Borghi, A. M., & Binkofski, F.
2014Words As social Tools: An embodied view on abstract concepts. Berlin: Springer. DOI logoGoogle Scholar
Borghi, A. M., & Cimatti, F.
2009Words as tools and the problem of abstract words meanings. In N. Taatgen, and H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society, 2304–2309.Google Scholar
Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M., & Nazir, T A.
2008Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46(2), 743–756. DOI logoGoogle Scholar
Braitenberg, V.
1978Cell assemblies in the cerebral cortex. In Theoretical approaches tocomplex systems (pp.171–188). Berlin: Springer. DOI logoGoogle Scholar
Caramazza, A., Anzellotti, S., Strnad, L., & Lingnau, A.
2014Embodied cognition and mirror neurons: A critical assessment. Annual review of neuroscience 37, 1–15.Google Scholar
Carota, F., Moseley, R., & Pulvermüller, F.
2012Body-part-specific representations of semantic noun categories. Journal of Cognitive Neuroscience 24(6), 1492–1509. DOI logoGoogle Scholar
Connell, L., Lynott, D., & Dreyer, F.
2012A functional role for modality-specific perceptual systems in conceptual representations. PLoS One 7(3), e33321. DOI logoGoogle Scholar
Crawford, J. R., Garthwaite, P. H., & Gray, C. D.
2003Wanted: Fully operational definitions of dissociations in single-case studies. Cortex 39(2), 357–370. DOI logoGoogle Scholar
Della Rosa, P. A., Catricalà, E., De Battisti, S., Vinson, D., Vigliocco, G., & Cappa, S. F.
2014How to assess abstract conceptual knowledge: construction, standardization and validation of a new battery of semantic memory tests. Functional Neurology 29(1), 47–55.Google Scholar
Dove, G.
2016Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic bulletin and review 23(4), 1109–1121. DOI logoGoogle Scholar
Dreyer, F. R., Frey, D., Arana, S., von Saldern, S., Picht, T., Vajkoczy, P., & Pulvermüller, F.
2015Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Frontiers in Psychology 6, 1661. DOI logoGoogle Scholar
Dreyer, F. R., & Pulvermüller, F.
2018Abstract semantics in the motor system? – An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex 100, 52–70. DOI logoGoogle Scholar
Ekman, P., Sorenson, E. R., & Friesen, W. V.
1969Pan-cultural elements in facial displays of emotion. Science, 164(3875, 86–88.Google Scholar
Ellis, A. W., & Young, A. W.
1988Human cognitive neuropsychology. Hove, UK: Lawrence Erlbaum Associates Ltd.Google Scholar
Fischer, M.
2008Finger counting habits modulate spatial-numerical associations. Cortex 44(4), 386–392. DOI logoGoogle Scholar
Fodor, J. A.
1983The modularity of mind: An essay on faculty psychology. Cambridge: MIT press.Google Scholar
Garagnani, M., & Pulvermüller, F.
2016Conceptual grounding of language in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs. The European journal of neuroscience 43(6), 721–737. DOI logoGoogle Scholar
Ghio, M., Vaghi, M. M. S., & Tettamanti, M.
2013Fine-grained semantic categorization across the abstract and concrete domains. PloS one 8(6), e67090. DOI logoGoogle Scholar
Ghio, M., Vaghi, M. M. S., Perani, D., & Tettamanti, M.
2016Decoding the neural representation of fine-grained conceptual categories. NeuroImage 132, 93–103. DOI logoGoogle Scholar
Glenberg, A. M., & Gallese, V.
2012Action-based language: A theory of language acquisition, comprehension, and production. Cortex 48(7), 905–922. DOI logoGoogle Scholar
Glenberg, A. M., & Kaschak, M. P.
2002Grounding language in action. Psychonomic bulletin and review 9(3), 558–565. DOI logoGoogle Scholar
González, J., Barros-Loscertales, A., Pulvermüller, F., Meseguer, V., Sanjuán, A., Belloch, V., & Ávila, C.
2006Reading cinnamon activates olfactory brain regions. Neuroimage 32(2), 906–912. DOI logoGoogle Scholar
Guan, C. Q., Meng, W., Yao, R., & Glenberg, A. M.
2013The motor system contributes to comprehension of abstract language. PloS one 8(9), e75183. DOI logoGoogle Scholar
Harnad, S.
1990The symbol grounding problem. Physica D: Nonlinear Phenomena 42(1–3), 335–346. DOI logoGoogle Scholar
Hauk, O.
2016Only time will tell–why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic bulletin and review 23(4), 1072–1079. DOI logoGoogle Scholar
Hauk, O., & Pulvermüller, F.
2004Neurophysiological distinction of action words in the fronto-central cortex. Human brain mapping 21(3), 191–201. DOI logoGoogle Scholar
2011The lateralization of motor cortex activation to action-words. Frontiers in human neuroscience 5, 149. DOI logoGoogle Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F.
2004Somatotopic representation of action words in human motor and premotor cortex. Neuron 41(2), 301–307. DOI logoGoogle Scholar
Hebb, D. O.
1949The organization of behavior: A neuropsychological approach. Hoboken, NJ: John Wiley and Sons.Google Scholar
Holmes, V. T., & Langford, J.
1976Comprehension and recall of abstract and concrete sentences. Journal of Verbal Learning and Verbal Behavior 15(5), 559–566. DOI logoGoogle Scholar
Howard, D., & Patterson, K. E.
1992The Pyramids and Palm Trees Test: A test of semantic access from words and pictures. Thames Valley Test Company.Google Scholar
Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H.
2006Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of autism and developmental disorders 36(5), 613–621. DOI logoGoogle Scholar
James, C. T.
1975The role of semantic information in lexical decisions. Journal of Experimental Psychology: Human Perception and Performance 1(2), 130.Google Scholar
Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D.
2012Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 48(7), 826–848. DOI logoGoogle Scholar
Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J., & Hoenig, K.
2008The sound of concepts: four markers for a link between auditory and conceptual brain systems. Journal of Neuroscience 28(47), 12224–12230. DOI logoGoogle Scholar
Mahon, B. Z.
2015What is embodied about cognition? Language, cognition and neuroscience 30(4), 420–429. DOI logoGoogle Scholar
Mahon, B. Z., & Caramazza, A.
2008A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of physiology-Paris 102(1), 59–70. DOI logoGoogle Scholar
Moeser, S. D.
1974Memory for meaning and wording in concrete and abstract sentences. Journal of Verbal Learning and Verbal Behavior 13(6), 682–697. DOI logoGoogle Scholar
Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F.
2012A Role for the Motor System in Binding Abstract Emotional Meaning. Cerebral Cortex 22(7), 1634–1647. DOI logoGoogle Scholar
Moseley, R. L., & Pulvermüller, F.
2014Nouns, verbs, objects, actions, and abstractions: local fMRI activity indexes semantics, not lexical categories. Brain and language 132, 28–42. DOI logoGoogle Scholar
Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F.
2015Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory. NeuroImage 104, 413–422. DOI logoGoogle Scholar
Neininger, B., & Pulvermüller, F.
2001The Right Hemisphere’s Role in Action Word Processing: a Double Case Study. Neurocase 7(4), 303–317. DOI logoGoogle Scholar
Paivio, A.
1986Mental Representations: A Dual Coding Approach. New York: Oxford University Press.Google Scholar
Postle, N., McMahon, K. L., Ashton, R., Meredith, M., & de Zubicaray, G. I.
2008Action word meaning representations in cytoarchitectonically defined primary and premotor cortices. Neuroimage 43(3), 634–644. DOI logoGoogle Scholar
Pulvermüller, F.
1999Words in the brain’s language. Behavioral and brain sciences 22(02), 253–279. DOI logoGoogle Scholar
2002A brain perspective on language mechanisms: from discrete neuronal ensembles to serial order. Progress in neurobiology 67(2), 85–111. DOI logoGoogle Scholar
2012Meaning and the brain: The neurosemantics of referential, interactive, and combinatorial knowledge. Journal of Neurolinguistics 25(5), 423–459. DOI logoGoogle Scholar
2013How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in cognitive sciences 17(9), 458–470. DOI logoGoogle Scholar
2018Neural Reuse of Action Perception Circuits for Language, Concepts and Communication. Progress in neurobiology 160, 1–44. DOI logoGoogle Scholar
Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J.
2005Functional links between motor and language systems. European Journal of Neuroscience 21(3), 793–797. DOI logoGoogle Scholar
Quillian, M. R.
1969The teachable language comprehender: A simulation program and theory of language. Communications of the ACM 12(8), 459–476. DOI logoGoogle Scholar
Rorden, C., Fridriksson, J., & Karnath, H. O.
2009An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage 44(4), 1355–1362. DOI logoGoogle Scholar
Rüschemeyer, S. A., Brass, M., & Friederici, A. D.
2007Comprehending prehending: neural correlates of processing verbs with motor stems. Journal of cognitive neuroscience 19(5), 855–865. DOI logoGoogle Scholar
Rüschemeyer, S. A., van Rooij, D., Lindemann, O., Willems, R. M., & Bekkering, H.
2010The function of words: Distinct neural correlates for words denoting differently manipulable objects. Journal of cognitive neuroscience 22(8), 1844–1851. DOI logoGoogle Scholar
Schwanenflugel, P. J., & Shoben, E. J.
1983Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition 9(1), 82.Google Scholar
Schwanenflugel, P. J., & Stowe, R. W.
1989Context availability and the processing of abstract and concrete words in sentences. Reading Research Quarterly, 114–126. DOI logoGoogle Scholar
Searle, J. R.
1980Minds, brains, and programs. Behavioral and brain sciences 3(3), 417–424. DOI logoGoogle Scholar
Shebani, Z., & Pulvermüller, F.
2013Moving the hands and feet specifically impairs working memory for arm-and leg-related action words. Cortex 49(1), 222–231. DOI logoGoogle Scholar
Sejnowski, T. J.
1977Storing covariance with nonlinearly interacting neurons. Journal of mathematical biology 4(4), 303–321. DOI logoGoogle Scholar
Shallice, T., & Cooper, R. P.
2013Is there a semantic system for abstract words? Frontiers in human neuroscience 7(175), 1–175),10.Google Scholar
Shtyrov, Y., Butorina, A., Nikolaeva, A., & Stroganova, T.
2014Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension. Proceedings of the National Academy of Sciences 111(18), 1918–1923. DOI logoGoogle Scholar
Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V., Danna, M., Scifo, P., & Perani, D.
2006Listening to action-related sentences activates fronto-parietal motor circuits. Listening 17(2).Google Scholar
Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F.
2017Brain connections of words, perceptions and actions: a neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia 98, 111–129. DOI logoGoogle Scholar
Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F.
2012You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage 59(4), 3139–3148. DOI logoGoogle Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V.
2010Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human brain mapping 31(10), 1459–1468. DOI logoGoogle Scholar
Warrington, E. K., & McCarthy, R. A.
1983Category specific access dysphasia. Brain 106, 859–878. DOI logoGoogle Scholar
1987Categories of knowledge: further fractionations and an attempted integration. Brain 110, 1273–1296. DOI logoGoogle Scholar
Warrington, E. K., & Shallice, T.
1984Category specific semantic impairments. Brain 107, 829–854. DOI logoGoogle Scholar
Willems, R. M., Labruna, L., D’Esposito, M., Ivry, R., & Casasanto, D.
2011A Functional Role for the Motor System in Language Understanding Evidence from Theta-Burst Transcranial Magnetic Stimulation. Psychological Science 22(7), 849–854. DOI logoGoogle Scholar
Wittgenstein, L.
1953Philosophical Investigations. Oxford: Blackwell Publishers.Google Scholar