Part of
Perspectives on Abstract Concepts: Cognition, language and communication
Edited by Marianna Bolognesi and Gerard J. Steen
[Human Cognitive Processing 65] 2019
► pp. 5974
References (59)
References
Barsalou, L. W. 1999. Perceptual symbol systems. The Behavioral and Brain Sciences 22(4), 577–609.Google Scholar
2008. Grounded cognition. Annual Review of Psychology 59, 617–645. DOI logoGoogle Scholar
Bartolomeo, P. 2002. The relationship between visual perception and visual mental imagery: a reappraisal of the neuropsychological evidence. Cortex 38(3), 357–378. DOI logoGoogle Scholar
2008. The neural correlates of visual mental imagery: an ongoing debate. Cortex 44(2), 107–108. DOI logoGoogle Scholar
Bedny, M., & Thompson-Schill, S. L. 2006. Neuroanatomically separable effects of imageability and grammatical class during single-word comprehension. Brain and Language 98(2), 127–139. DOI logoGoogle Scholar
Behrmann, M., Moscovitch, M., & Winocur, G. 1994. Intact visual imagery and impaired visual perception in a patient with visual agnosia. Journal of Experimental Psychology 20(5), 1068–1087.Google Scholar
Binder, J. R. 2007. Effects of word imageability on semantic access: neuroimaging studies. In John Hart, Michael A. Kraut (Eds.), Neural Basis of Semantic Memory (149–170). Cambridge: University Press. DOI logoGoogle Scholar
Binder, J. R., & Desai, R. H. 2011. The neurobiology of semantic memory. Trends in Cognitive Sciences 15(11), 527–536. DOI logoGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12), 2767–2796. DOI logoGoogle Scholar
Bolognesi, M., & Steen, G. 2018. Abstract Concepts: Structure, Processing and Modeling. Editors’ introduction. Topics in Cognitive Science 10(3), 490–500.Google Scholar
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. 2017. The challenge of abstract concepts. Psychological Bulletin 143(3), 263–292. DOI logoGoogle Scholar
Calzavarini, F. 2017. Inferential and referential lexical semantic competence: A critical review of the supporting evidence. Journal of Neurolinguistics 44, 163–189. DOI logoGoogle Scholar
Campbell, R., & Manning, L. 1996. Optic aphasia: a case with spared action naming and associated disorders. Brain and Language 53(2), 183–221. DOI logoGoogle Scholar
Carlesimo, G. A., Casadio, P., Sabbadini, M., & Caltagirone, C. 1998. Associative visual agnosia resulting from a disconnection between intact visual memory and semantic systems. Cortex 34(4), 563–576. DOI logoGoogle Scholar
D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., & Farah, M. J. 1997. A functional MRI study of mental image generation. Neuropsychologia 35(5), 725–730. DOI logoGoogle Scholar
Dove, G. 2009. Beyond perceptual symbols: A call for representational pluralism. Cognition 110(3), 412–431. DOI logoGoogle Scholar
Evans, V. & Green, M. 2006. Cognitive linguistics: an introduction. Edinburgh: University Press.Google Scholar
Fery, P., & Morais, J. 2003. A Case Study of Visual Agnosia without Perceptual Processing or Structural Descriptions Impairment. Cognitive Neuropsychology 20(7), 595–618. DOI logoGoogle Scholar
Forde, E. M. E., Francis, D., Riddoch, M. J., Rumiati, R. I., & Humphreys, G. W. 1997. On the Links between Visual Knowledge and Naming: A Single Case Study of a Patient with a Category-specific Impairment for Living Things. Cognitive Neuropsychology 14(3), 403–458. DOI logoGoogle Scholar
Gallese, V., & Lakoff, G. 2005. The Brain’s concepts: the role of the Sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22(3), 455–479. DOI logoGoogle Scholar
Goldenberg, G., & Artner, C. 1991. Visual imagery and knowledge about the visual appearance of objects in patients with posterior cerebral artery lesions. Brain and Cognition 15(2), 160–186. DOI logoGoogle Scholar
Goodglass, H., Hyde, M. R., & Blumstein, S. 1969. Frequency, picturability and availability of nouns in aphasia. Cortex 5(2), 104–119. DOI logoGoogle Scholar
Hoffman, P. 2016. The meaning of “life” and other abstract words: Insights from neuropsychology. Journal of Neuropsychology 10(2), 317–343. DOI logoGoogle Scholar
Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. 2015. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 63, 250–266. DOI logoGoogle Scholar
Hoffman, P., Jefferies, E., & Lambon Ralph, M. A. 2010. Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: convergent neuropsychological and repetitive TMS evidence. The Journal of Neuroscience 30(46), 15450–15456. DOI logoGoogle Scholar
Hoffman, P., & Lambon Ralph, M. A. 2011. Reverse concreteness effects are not a typical feature of semantic dementia: evidence for the hub-and-spoke model of conceptual representation. Cerebral Cortex 21(9), 2103–2112. DOI logoGoogle Scholar
Holcomb, P. J., Kounios, J., Anderson, J. E., & West, W. C. 1999. Dual-coding, context-availability, and concreteness effects in sentence comprehension: an electrophysiological investigation. Journal of Experimental Psychology 25(3), 721–742.Google Scholar
Humphreys, G. W., Riddoch, M. J., & Price, C. J. 1997. Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional anatomy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 352(1358), 1275–1282. DOI logoGoogle Scholar
Katz, R. B., & Goodglass, H. 1990. Deep dysphasia: analysis of a rare form of repetition disorder. Brain and Language 39(1), 153–185. DOI logoGoogle Scholar
Kemmerer, D. 2010. How Words Capture Visual Experience: The Perspective from cognitive neuroscience. In B. Malt and P. Wolff (Eds.), Words and the mind: How words capture human experience (287–327). Oxford: University Press. DOI logoGoogle Scholar
Kiefer, M., & Pulvermüller, F. 2012. Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48(7), 805–825. DOI logoGoogle Scholar
Kounios, J., & Holcomb, P. J. 1994. Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology 20(4), 804–823.Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G., & Mishkin, M. 2013. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends in Cognitive Sciences 17(1), 26–49. DOI logoGoogle Scholar
Lakoff, G. 1990. Women, Fire, and Dangerous Things. Cambridge: Cambridge University Press.Google Scholar
Lambon Ralph, M. A. 2014. Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369(1634). DOI logoGoogle Scholar
Landauer, T. K. 1997. A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review 104(2), 211–240. DOI logoGoogle Scholar
Mahon, B. Z. 2015. What is embodied about cognition? Language , Cognition and Neuroscience 30(4), 420–429. DOI logoGoogle Scholar
Mahon, B. Z., & Caramazza, A. 2008. A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology 102(1–3), 59–70.Google Scholar
Manning, L. 2000. Loss of visual imagery and defective recognition of parts of wholes in optic aphasia. Neurocase 6(2), 111–128. DOI logoGoogle Scholar
Marconi, D., Manenti, R., Catricalà, E., Della Rosa, P. A., Siri, S., & Cappa, S. F. 2013. The neural substrates of inferential and referential semantic processing. Cortex 49(8), 2055–2066. DOI logoGoogle Scholar
Marconi, D. 1997. Lexical Competence. Cambridge: MIT Press.Google Scholar
Martin, A. 2007. The representation of object concepts in the brain. Annual Review of Psychology 58, 25–45. DOI logoGoogle Scholar
McNorgan, C. 2012. A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Frontiers in Human Neuroscience 6, 285. DOI logoGoogle Scholar
Mellet, E., Tzourio, N., Denis, M., & Mazoyer, B. 1998. Cortical anatomy of mental imagery of concrete nouns based on their dictionary definition. Neuroreport 9(5), 803–808. DOI logoGoogle Scholar
Mestres-Missé, A., Münte, T. F., & Rodriguez-Fornells, A. 2009. Functional neuroanatomy of contextual acquisition of concrete and abstract words. Journal of Cognitive Neuroscience 21(11), 2154–2171. DOI logoGoogle Scholar
Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. 2012. Coming of age: A review of embodiment and the neuroscience of semantics. Cortex 48(7), 788–804. DOI logoGoogle Scholar
Nittono, H., Suehiro, M., & Hori, T. 2002. Word imageability and N400 in an incidental memory paradigm. International Journal of Psychophysiology 44(3), 219–229. DOI logoGoogle Scholar
Prinz, J. 2002. Furnishing the Mind: Concepts and Their Perceptual Basis. Cambridge, MA.: MIT Press.Google Scholar
Pulvermüller, F. 2012. Meaning and the brain: The neurosemantics of referential, interactive, and combinatorial knowledge. Journal of Neurolinguistics 25(5), 423–459. DOI logoGoogle Scholar
2013. How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences 17(9), 458–470. DOI logoGoogle Scholar
Riddoch, M. J., & Humphreys, G. W. 1987. Visual object processing in optic aphasia: A case of semantic access agnosia. Cognitive Neuropsychology 4(2), 131–185. DOI logoGoogle Scholar
Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. 2005. Modulation of the semantic system by word imageability. NeuroImage 27(1), 188–200. DOI logoGoogle Scholar
Shallice, T., & Cooper, R. P. 2013. Is there a semantic system for abstract words? Frontiers in Human Neuroscience 7, 175.Google Scholar
Shallice, T., & Cooper, R. 2015. The Organisation of Mind. Oxford: Oxford University Press.Google Scholar
Simmons, W. K., & Barsalou, L. W. 2003. The similarity-in-topography principle: reconciling theories of conceptual deficits. Cognitive Neuropsychology 20(3), 451–486. DOI logoGoogle Scholar
Vandenbulcke, M., Peeters, R., Fannes, K., & Vandenberghe, R. 2006. Knowledge of visual attributes in the right hemisphere. Nature Neuroscience 9(7), 964–970. DOI logoGoogle Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. 2010. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies. Human Brain Mapping 31(10), 1459–1468. DOI logoGoogle Scholar
Whatmough, C., Verret, L., Fung, D., & Chertkow, H. 2004. Common and contrasting areas of activation for abstract and concrete concepts: an H2 15O PET study. Journal of Cognitive Neuroscience 16(7), 1211–1226. DOI logoGoogle Scholar
Wise, R. J., Howard, D., Mummery, C. J., Fletcher, P., Leff, A., Büchel, C., & Scott, S. K. 2000. Noun imageability and the temporal lobes. Neuropsychologia 38(7), 985–994. DOI logoGoogle Scholar