Part of
Perspectives on Abstract Concepts: Cognition, language and communication
Edited by Marianna Bolognesi and Gerard J. Steen
[Human Cognitive Processing 65] 2019
► pp. 101118
References (84)
References
Acheson, D. J., & Hagoort, P. 2013. Stimulating the brain’s language network: syntactic ambiguity resolution after TMS to the inferior frontal gyrus and middle temporal gyrus. Journal of Cognitive Neuroscience 25(10), 1664–1677. DOI logoGoogle Scholar
Anderson, M. L. 2010. Neural reuse: A fundamental organizational principle of the brain. Behavioral and brain sciences 33(04), 245–266. DOI logoGoogle Scholar
2016. Précis of after phrenology: neural reuse and the interactive brain. Behavioral and Brain Sciences 39, e120. DOI logoGoogle Scholar
Andrews, M., Frank, S., & Vigliocco, G. 2014. Reconciling embodied and distributional accounts of meaning in language. Topics in cognitive science 6(3), 359–370. DOI logoGoogle Scholar
Asendorpf, J. B., Banse, R., & Mücke, D. 2002. Double dissociation between implicit and explicit personality self-concept: The case of shy behavior. Journal of Personality and Social Psychology 83, 380–393. DOI logoGoogle Scholar
Barsalou, L. W. 1999. Perceptual symbols systems. Behavioral and Brain Sciences 22, 577–660.Google Scholar
2008. Grounded cognition. Annu. Rev. Psychol. 59, 617–645. DOI logoGoogle Scholar
2016. On staying grounded and avoiding Quixotic dead ends. Psychonomic Bulletin and Review 23, 1122–1142. DOI logoGoogle Scholar
Barsalou, L. W., Santos, A., Simmons, K. W., & Wilson, C. D. 2008. Language and simulations in conceptual processing. In M. De Vega, A. M. Glenberg, and A. C. Graesser (Eds.), Symbols, embodiment and meaning (245–283). Oxford: Oxford University Press. DOI logoGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12), 2767–2796. DOI logoGoogle Scholar
Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. J. 1999. A frontoparietal circuit for object manipulation in man: evidence from an fMRI-study. European journal of neuroscience. 11(9), 3276–3286. DOI logoGoogle Scholar
Binney, R. J., Parker, G. J. M., & Lambon Ralph, M. A. 2012. Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. Journal of Cognitive Neuroscience 24(10), 1998–2014. DOI logoGoogle Scholar
Bookheimer, S. 2002. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual review of neuroscience 25(1), 151–188. DOI logoGoogle Scholar
Bolognesi, M., & Steen, G. (Eds.), 2018. Abstract Concepts: Structure, Processing and Modeling. Topics in Cognitive Science 10(3).Google Scholar
Borghi, A. M. 2013. Embodied cognition and word acquisition: The challenge of abstract words. In: C. Müller, A. Cienki, E. Fricke, S. H. Ladewig, D. McNeill and J. Bressem (Eds.), Body-Language-Communication: An International Handbook on Multimodality in Human Interaction. Handbooks of Linguistics and Communication Science (HSK) 38/2 Berlin, Boston: De Gruyter: Mouton.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., Tummolini, L. 2018. Varieties of abstract concepts: development, use, and representation in the brain. Philosophical Transactions of the Royal Society of London. Series B, biological sciences 373(1752).Google Scholar
Borghi, A. M., & Binkofski, F. 2014. Words as social tools: An embodied view on abstract concepts. Berlin and New York: Springer. DOI logoGoogle Scholar
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., Tummolini, L. 2017. The challenge of abstract concepts. Psychological Bulletin 143(3), 263. DOI logoGoogle Scholar
Borghi, A. M., & Cimatti, F. 2009. Words as tools and the problem of abstract words meanings. In N. Taatgen and H. van Rijn (Eds.). Proceedings of the 31st Annual Conference of the Cognitive Science Society (2304–2309). Amsterdam: Cognitive Science Society.Google Scholar
Borghi, A. M., Flumini, A., Cimatti, F., Marocco, D. & Scorolli, C. 2011. Manipulating objects and telling words: A study on concrete and abstract words acquisition. Frontiers in Psychology 2(15).Google Scholar
Borghi, A. M., & Setti, A. 2017. Abstract Concepts and Aging: An Embodied and Grounded Perspective. Frontiers in Psychology 8. DOI logoGoogle Scholar
Borghi, A. M. & Zarcone, E. 2016. Grounding abstractness: Abstract concepts and the activation of the mouth. Frontiers in Psychology 7(1498).Google Scholar
Bosco, F. M., Parola, A., Valentini, M. C., & Morese, R. 2017. Neural correlates underlying the comprehension of deceitful and ironic communicative intentions. Cortex 94, 73–86. DOI logoGoogle Scholar
Bransford, J. D., & McCarrell, N. S. 1974. A sketch of a cognitive approach to comprehension: Some thoughts about understanding what it means to comprehend. In W. Weimer & D. Palermo (Eds.), Cognition and the symbolic processes. Hillsdale, N.J.: Erlbaum.Google Scholar
Brunel, F. F., Tietje, B. C., & Greenwald, A. G. 2004. Is the Implicit Association Test a valid and valuable measure of implicit consumer social cognition? Journal of Consumer Psychology 14(4), 385–404. DOI logoGoogle Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., & Freund, H. J. 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European journal of neuroscience 13(2), 400–404.Google Scholar
De Houwer, J. 2006. What are implicit measures and why are we using them? In R. W. Wiers & A. W. Stacy (Eds.), The handbook of implicit cognition and addiction (11–28). Thousand Oaks, CA: SAGE. DOI logoGoogle Scholar
2003. The extrinsic affective Simon task. Experimental Psychology 50(2), 77–85. DOI logoGoogle Scholar
Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. 2010. Beyond the abstract-concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of acquisition, context availability, and abstractness norms for a set of 417 Italian words. Behavior research methods 42(4), 1042–1048. DOI logoGoogle Scholar
Dove, G. 2009. Beyond Perceptual symbols: a call for representational pluralism. Cognition 110, 412–431. DOI logoGoogle Scholar
2011. On the need for embodied and disembodied cognition. Frontiers in Psychology 1, 242. DOI logoGoogle Scholar
2014. Thinking in words: language as an embodied medium of thought. Topics in cognitive science 6(3), 371–389. DOI logoGoogle Scholar
Dreyer, F. R., Frey, D., Arana, S., Saldern, S. V., Picht, T., Vajkoczy, P., & Pulvermüller, F. 2015. Is the motor system necessary for processing action and abstract emotion words? Evidence from focal brain lesions. Frontiers in psychology 6, 1661. DOI logoGoogle Scholar
Farias, A. R., Garrido, M. & Semin, G. R. 2013. Converging modalities ground abstract categories: The case of politics. PLoS One 8 (4), e60971. DOI logoGoogle Scholar
Fazio, R. H., & Olson, M. A. 2003. Implicit measures in social cognition research: Their meaning and use. Annual Review of Psychology 54, 297–327. DOI logoGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & Von Cramon, D. Y. 2008. The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping 29(5), 581–593. DOI logoGoogle Scholar
Fiebach, C. J., Friederici, A. D. 2004. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement. Neuropsychologia 42, 62–70. DOI logoGoogle Scholar
Fiebach, C. J., Ricker, B., Friederici, A. D., Jacobs, A. M. 2007. Inhibition and facilitation in visual word recognition: prefrontal contribution to the orthographic neighborhood size effect. Neuroimage 36, 901–911. DOI logoGoogle Scholar
Gallese, V. 2008. Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social neuroscience 3(3–4), 317–333. DOI logoGoogle Scholar
Ghio, M., Vaghi, M. M. S., & Tettamanti, M. 2013. Fine-grained semantic categorization across the abstract and concrete domains. PloS one 8(6), e67090. DOI logoGoogle Scholar
Glenberg, A. M., & Gallese, V. 2012. Action-based language: A theory of language acquisition, comprehension, and production. Cortex 48(7), 905–922. DOI logoGoogle Scholar
Gould, S. J. 1991. Exaptation: A crucial tool for an evolutionary psychology. Journal of Social Issues 47, 43–65. DOI logoGoogle Scholar
Grade, S., Badets, A., & Pesenti, M. 2016. Influence of finger and mouth action observation on random number generation: an instance of embodied cognition for abstract concepts. Psychological Research, 1–11.Google Scholar
Granito, C., Scorolli, C., & Borghi, A. M. 2015. Naming a Lego World. The Role of Language in the Acquisition of Abstract Concepts. PloS one 10(1), e0114615. DOI logoGoogle Scholar
Hoffman, P., Binney, R. J., Lambon Ralph, M. A. 2015. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 63, 250–266. DOI logoGoogle Scholar
Kieras, D. 1978. Beyond pictures and words: Alternative information-processing models for imagery effects in verbal memory. Psychological Bulletin 55, 532–554. DOI logoGoogle Scholar
Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. 2011. The representation of abstract words: why emotion matters. Journal of Experimental Psychology 140(1), 14–34. DOI logoGoogle Scholar
Krom, R. S. H. 1990. Wenselijke woordenschat en feitelijke frequenties: De nieuwe streeflijst Woordenschat getrancheerd naar verwervingsleeftijd en voorzien van frequentiegegevens. [Advisable vocabulary and actual frequencies: New target list of words classified according to age of acquisition, with frequency data added]. Arnhem, The Netherlands: Cito.Google Scholar
Landauer, T. K., & Dumais, S. T. 1997. A solution to Plato’s problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review 104 (2), 211–240. DOI logoGoogle Scholar
Lebois, L. A., Wilson-Mendenhall, C. D., & Barsalou, L. W. 2015. Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science 39(8), 1764–1801. DOI logoGoogle Scholar
Lieberman, P. 2009. Human language and our reptilian brain: The subcortical bases of speech, syntax, and thought. Harvard University Press.Google Scholar
Loftus, G. R., & Masson, M. E. 1994. Using confidence intervals in within-subject designs. Psychonomic Bulletin & Review 1 (4), 476–490.Google Scholar
Lund, K., & Burgess, C. 1996. Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments and Computers 28 (2), 203–208. DOI logoGoogle Scholar
Lynott, D., & Connell, L. 2009. Modality exclusivity norms for 423 object properties. Behavior Research Methods 41(2), 558–564. DOI logoGoogle Scholar
Moffat, M., Siakaluk, P. D., Sidhu, D. M., & Pexman, P. M. 2015. Situated conceptualization and semantic processing: effects of emotional experience and context availability in semantic categorization and naming tasks. Psychonomic bulletin and review 22(2), 408–419. DOI logoGoogle Scholar
Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. 2011. A role for the motor system in binding abstract emotional meaning. Cerebral Cortex 22(7), 1634–1647. DOI logoGoogle Scholar
Newcombe, P. I., Campbell, C., Siakaluk, P. D., & Pexman, P. M. 2012. Effects of emotional and sensorimotor knowledge in semantic processing of concrete and abstract nouns. Frontiers in human neuroscience 6, 275. DOI logoGoogle Scholar
Noppeney, U., & Price, C. J. 2004. Retrieval of abstract semantics. Neuroimage 22(1), 164–170. DOI logoGoogle Scholar
Paivio, A. 1971. Imagery and verbal processes. New York: Holt, Rinehart and Winston.Google Scholar
1986. Mental representations: A dual coding approach. Oxford, UK: Oxford University Press.Google Scholar
2007. Mind and its evolution: A dual coding theoretical approach. Mahwah, NJ: Erlbaum.Google Scholar
Papagno, A., Fogliata, E., Catricalà, C., & Miniussi, C. 2009. The lexical processing of abstract and concrete nouns. Brain Research 1263, 78–86. DOI logoGoogle Scholar
Petrides, M. 1994. Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. In F. Boller, J. Grafman (Eds.), Handbook of Neuropsychology (959–981). Amsterdam: Elsevier.Google Scholar
Price, C. J. 2010. The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences 1191(1), 62–88. DOI logoGoogle Scholar
Prinz, J. J. 2002. Furnishing the Mind: Concepts and their Perceptual Basis. Cambridge, MA: MIT Press.Google Scholar
2012. Beyond human nature. How culture and experience shape our lives. London; New York, NY: Penguin; NortonGoogle Scholar
Pulvermüller, F., & Fadiga, L. 2010. Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience 11(5), 351–360. DOI logoGoogle Scholar
Recchia, G., & Jones, M. 2012. The semantic richness of abstract concepts. Frontiers in human neuroscience 6, 315. DOI logoGoogle Scholar
Roxbury, T., McMahon, K., Coulthard, A., & Copland, D. A. 2015. An fMRI Study of Concreteness Effects during Spoken Word Recognition in Aging. Preservation or Attenuation? Frontiers in aging neuroscience, 7.Google Scholar
Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. 2013. Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in human neuroscience 7, 25. DOI logoGoogle Scholar
Scerrati, E. 2017. From amodal to grounded to hybrid accounts of knowledge: New evidence from the investigation of the modality-switch effect. Unpublished doctoral dissertation, University of Bologna, Bologna, Italy.Google Scholar
Scerrati, E., Baroni, G., Borghi, A. M., Galatolo, R., Lugli, L., & Nicoletti, R. 2015. The modality-switch effect: visually and aurally presented prime sentences activate our senses. Frontiers in psychology, 6.Google Scholar
Scerrati, E., Lugli, L., Nicoletti, R., & Borghi, A. M. 2017. The Multilevel Modality-Switch Effect: What Happens When We See the Bees Buzzing and Hear the Diamonds Glistening. Psychonomic bulletin and review 24(3), 798–803. DOI logoGoogle Scholar
Schwanenflugel, P. J. 1991. Why are abstract concepts hard to understand? In P. J. Schwanenflugel (Ed.), The psychology of word meanings (223–250). Hillsdale, NJ: Erlbaum.Google Scholar
Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. 1988. Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language 27, 499–520. DOI logoGoogle Scholar
Schwanenflugel, P. J., & Shoben, E. J. 1983. Differential context effects in the comprehension of abstract and concrete verbal materials. Journal of Experimental Psychology: Learning, Memory, and Cognition 9, 82–102.Google Scholar
Siakaluk, P. D., Knol, N., & Pexman, P. M. 2014. Effects of emotional experience for abstract words in the Stroop task. Cognitive science 38(8), 1698–1717. DOI logoGoogle Scholar
Topolinski, S., & Strack, F. 2009. The architecture of intuition: Fluency and affect determine intuitive judgments of semantic and visual coherence and judgments of grammaticality in artificial grammar learning. Journal of Experimental Psychology: General 138(1), 39. DOI logoGoogle Scholar
Van Loon–Vervoorn, W. A., 1985. Voorstelbaarheidswaarden van Nederlandse woorden: 4600 substantieven, 1000 verba en 500 adjectieven. [Imagery values of Dutch words: 4600 nouns, 1000 verbs, and 500 adjectives]. Lisse, The Netherlands: Swets and Zeitlinger.Google Scholar
Vigliocco, G., Kousta, S. T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., and Cappa, S. F. 2014. The neural representation of abstract words: the role of emotion. Cerebral Cortex 24(7), 1767–1777. DOI logoGoogle Scholar
Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. 2012. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobe. Journal of Cognitive Neuroscience 24(8), 1766–1778. DOI logoGoogle Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. 2010. Neural representation of abstract and concrete concepts: A meta- analysis of neuroimaging studies. Human brain mapping 31(10), 1459–1468. DOI logoGoogle Scholar
Wauters, L. N., Tellings, A., & van Bon, W. H. J. 2008. Mode of acquisition as a factor in deaf children’s reading comprehension. Journal of Deaf Studies and Deaf Education 13, 175–192. DOI logoGoogle Scholar
Wauters, L. N., Tellings, A. E., Van Bon, W. H., & Van Haaften, A. W. 2003. Mode of acquisition of word meanings: The viability of a theoretical construct. Applied Psycholinguistics 24(03), 385–406. DOI logoGoogle Scholar
Cited by (1)

Cited by one other publication

Wołoszyn, Kinga, Mateusz Hohol, Michał Kuniecki & Piotr Winkielman
2022. Restricting movements of lower face leaves recognition of emotional vocalizations intact but introduces a valence positivity bias. Scientific Reports 12:1 DOI logo

This list is based on CrossRef data as of 27 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.