Part of
Handbook of Pragmatics: 24th Annual Installment
Edited by Jan-Ola Östman and Jef Verschueren
[Handbook of Pragmatics 24] 2022
► pp. 331
References (41)
References
Baayen, Harald. 2008. Analyzing linguistic data: A practical introduction. Cambridge and New York: Cambridge University Press. DOI logoGoogle Scholar
Baayen, R. Harald, Doug J. Davidson and Douglas M. Bates. 2008. “Mixed-effects modeling with crossed random effects for subjects and items”. Journal of Memory and Language 59 (4): 390–412. DOI logoGoogle Scholar
Biber, Douglas. 2012. “Register as a predictor of linguistic variation.” Corpus Linguistics and Linguistic Theory 8 (1): 9–37. DOI logoGoogle Scholar
. 2014. “Using multi-dimensional analysis to explore cross-linguistic universals of register variation.” Languages in Contrast 14 (1): 7–34. DOI logoGoogle Scholar
Cangemi, Francesco, Martina Krüger and Martina Grice. 2015. “Listener-specific perception of speaker-specific production in intonation.” In Individual Differences in Speech Production and Perception, ed. by Susanne Fuchs, Daniel Pape, Caterina Petrone and Pascal Perrier, 123–145. Frankfurt: Peter Lang.Google Scholar
Čermák, František and Alexandr Rosen. 2012. “The case of InterCorp, a multilingual parallel corpus.” International Journal of Corpus Linguistics 17 (3): 411–427. DOI logoGoogle Scholar
Council of Europe. 2001. Common European framework of reference for languages: Learning, teaching, assessment. Cambridge: Cambridge University Press.Google Scholar
Ellis, Nick C. 2016. “Salience, Cognition, Language Complexity, and Complex Adaptive Systems.” Studies in second language acquisition 38 (2): 341–351. DOI logoGoogle Scholar
Forstmeier, Wolfgang and Holger Schielzeth. 2011. “Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse.” Behavioral ecology and sociobiology 65 (1): 47–55. Berlin/Heidelberg: Springer. DOI logoGoogle Scholar
Gries, Stefan Th. 2015. “The most under-used statistical method in corpus linguistics: Multi-level (and mixed-effects) models.” Corpora 10 (1): 95–125. DOI logoGoogle Scholar
Gries, Stefan Th. 2021a. Statistics for Linguistics with R. 3rd edition. Berlin: De Gruyter Mouton. DOI logoGoogle Scholar
2021b. “(Generalized Linear) Mixed-Effects Modeling: A Learner Corpus Example.” Language Learning. Ahead-of-press. DOI logo (19 March, 2021).Google Scholar
Hakulinen, Auli, Maria Vilkuna, Riitta Korhonen, Vesa Koivisto, Tarja Riitta Heinonen and Irja Alho. 2004. Iso suomen kielioppi. Helsinki: Suomalaisen kirjallisuuden seura. [URL]
Hout, Roeland van. 1994. “Statistics.” Handbook of Pragmatics: Manual. Amsterdam: John Benjamins. Handbook of Pragmatics Online: DOI logoGoogle Scholar
Ivaska, Ilmari. 2014. “The Corpus of Advanced Learner Finnish (LAS2): Database and toolkit to study academic learner Finnish.” Apples – Journal of Applied Language Studies 8(3). 21–38.Google Scholar
. 2015. “Longitudinal changes in academic learner Finnish: A key structure analysis.” International Journal of Learner Corpus Research 1 (2): 210–241. DOI logoGoogle Scholar
Ivaska, Ilmari, Markku Nikulin and Elisa Reunanen. 2021. The Corpus of Academic Finnish. Turku: University of Turku.Google Scholar
Jaeger, T. Florian. 2008. “Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models.” Journal of memory and language 59 (4): 434–446. DOI logoGoogle Scholar
Jaeger, T. Florian, Peter Graff, William Croft and Daniel Pontillo. 2011. “Mixed effect models for genetic and areal dependencies in linguistic typology.” Linguistic Typology 15 (2): 281–320. DOI logoGoogle Scholar
Jantunen, Jarmo. 2011. “Kansainvälinen oppijansuomen korpus (ICLFI): typologia, taustamuuttujat ja annotointi.” Lähivõrdlusi. Lähivertailuja 21: 86–105. DOI logoGoogle Scholar
Johnson, Daniel Ezra. 2009. “Getting off the GoldVarb Standard: Introducing Rbrul for Mixed-Effects Variable Rule Analysis.” Language and Linguistics Compass 3 (1): 359–383. DOI logoGoogle Scholar
Kenny, David A. and Charles M. Judd. 1986. “Consequences of violating the independence assumption in analysis of variance.” Psychological Bulletin 99 (3): 422–431. DOI logoGoogle Scholar
Klavan, Jane and Dagmar Divjak. 2016. “The cognitive plausibility of statistical classification models: Comparing textual and behavioral evidence.” Folia linguistica 50 (2): 355–384. DOI logoGoogle Scholar
Larsson, Tove, Luke Plonsky and Gregory R. Hancock. 2020. “On the benefits of structural equation modeling for corpus linguists.” Corpus Linguistics and Linguistic Theory Ahead-of-print. DOI logo. DOI logoGoogle Scholar
Mauranen, Anna. 2000. “Strange strings in translated language: A study on corpora.” In Intercultural Faultlines: Research Models in Translation Studies, ed. by Maeve Olohan, 119–141. Manchester: St Jerome Publishing.Google Scholar
Mundry, Roger and Charles L. Nunn. 2009. Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution. The American naturalist 173 (1): 119–123. DOI logoGoogle Scholar
Norouzian, Reza, Michael de Miranda and Luke Plonsky. 2018. “The Bayesian Revolution in Second Language Research: An Applied Approach.” Language Learning 68 (4): 1032–1075. DOI logoGoogle Scholar
Norris, John M. 2015. “Statistical Significance Testing in Second Language Research: Basic Problems and Suggestions for Reform.” Language Learning 65 (S1): 97–126. DOI logoGoogle Scholar
Pallaskallio, Ritva. 2003. “Uutisaika. Finiittiverbin aikamuodoista katastrofiuutisissa 1892–1994.” Virittäjä 107 (1): 27–45. [URL] (15 April, 2021).
Plonsky, Luke and Frederick L. Oswald. 2017. “Multiple regression as a flexible alternative to anova in L2 research.” Studies in Second Language Acquisition 39 (3): 579–592. DOI logoGoogle Scholar
R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. [URL]
Roettger, Timo B. 2019. “Researcher degrees of freedom in phonetic research.” Laboratory phonology 10 (1): 1–27. DOI logoGoogle Scholar
Röthlisberger, Melanie, Jason Grafmiller and Benedikt Szmrecsanyi. 2017. “Cognitive indigenization effects in the English dative alternation.” Cognitive Linguistics 28(4): 673–710. DOI logoGoogle Scholar
Serlin, Ronald C. and Joel R. Levin. 1985. “Teaching How to Derive Directly Interpretable Coding Schemes for Multiple Regression Analysis.” Journal of Educational Statistics 10 (3): 223–238. DOI logoGoogle Scholar
Simmons, Joseph P., Leif D. Nelson and Uri Simonsohn. 2011. “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant.” Psychological science 22 (11): 1359–1366. DOI logoGoogle Scholar
Szmrecsanyi, Benedikt. 2019. “Register in variationist linguistics.” Register Studies 1 (1): 76–99. DOI logoGoogle Scholar
Tagliamonte, Sali A. and R. Harald Baayen. 2012. “Models, forests and trees of York English: Was/were variation as a case study for statistical practice.” Language Variation and Change 24: 135–178. DOI logoGoogle Scholar
Whittingham, Mark J., Philip A. Stephens, Richard B. Bradbury and Robert P. Freckleton. 2006. “Why Do We Still Use Stepwise Modelling in Ecology and Behaviour?The Journal of Animal Ecology 75 (5): 1182–1189. DOI logoGoogle Scholar
Wieling, Martijn, John Nerbonne and R. Harald Baayen. 2011. “Quantitative Social Dialectology: Explaining Linguistic Variation Geographically and Socially.” PLoS ONE 6(9). e23613. DOI logoGoogle Scholar
Winter, Bodo. 2020. Statistics for Linguists: An introduction using R. London: Routledge. DOI logoGoogle Scholar
Winter, Bodo and Martine Grice. 2021. “Independence and generalizability in linguistics”. Linguistics 59 (5): 1251–1277. DOI logoGoogle Scholar