Article published In:
Information Visualization
Edited by Isabel Meirelles, Marian Dörk and Yanni Loukissas
[Information Design Journal 27:1] 2022
► pp. 6475
References (43)
References
Bivand, R., Keitt, T., & Rowlingson, B. (2021). rgdal: Bindings for the “Geospatial” Data Abstraction Library. [URL]
Davila, P. (2019). Diagrams of Power: Visualizing, mapping and performing resistance (01 edition). Eindhoven. Onomatopee.Google Scholar
D’Ignazio, C. (2017). Creative data literacy: Bridging the gap between the data-haves and data-have nots. Information Design Journal, 23 (1), 6–18. DOI logoGoogle Scholar
D’Ignazio, C., & Klein, L. F. (2016). Feminist Data Visualization. IEEE VIS Conference, Baltimore, October. 23–28.Google Scholar
(2020). Data Feminism. MIT Press. DOI logoGoogle Scholar
Dörk, M., Feng, P., Collins, C., & Carpendale, S. (2013). Critical InfoVis: Exploring the Politics of Visualization. CHI ’13 Extended Abstracts on Human Factors in Computing Systems, 2189–2198. DOI logoGoogle Scholar
Dowle, M., & Srinivasan, A. (2021). data.table: Extension of `data.frame`. [URL]
Drucker, J. (2011). Humanities approaches to graphical display. Digital Humanities Quarterly, 5 (1), 1–21.Google Scholar
(2017). Information visualization and/as enunciation. Journal of Documentation, 73 (5), 903–916. DOI logoGoogle Scholar
Fernstad, S. J. (2019). To identify what is not there: A definition of missingness patterns and evaluation of missing value visualization. Information Visualization, 18 (2), 230–250. DOI logoGoogle Scholar
Geoportal Berlin. (n.d.a). Baumbestand Berlin – Anlagenbäume. [URL]
. (n.d.b). Baumbestand Berlin – Straßenbäume. [URL]
Hall, P., Heath, C., & Coles-Kemp, L. (2015). Critical visualization: A case for rethinking how we visualize risk and security. Journal of Cybersecurity, 1 (1), 93–108. DOI logoGoogle Scholar
Hengesbach, N. (2022). Undoing Seamlessness: Exploring Seams for Critical Visualization. CHI Conference on Human Factors in Computing Systems Extended Abstracts, 2022, New Orleans, LA, USA. New York, NY, USA. DOI logoGoogle Scholar
Hijmans, R. J. (2020). raster: Geographic Data Analysis and Modeling. [URL]
(2021). terra: Spatial Data Analysis. [URL]
Kay, M., Kola, T., Hullman, J., & Munson, S. (2016). When(ish) is My Bus? User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. ACM Human Factors in Computing Systems (CHI). [URL]
Kennedy, H., Hill, R. L., Aiello, G., & Allen, W. (2016). The work that visualisation conventions do. Information, Communication & Society, 19 (6), 715–735. DOI logoGoogle Scholar
Kinkeldey, C., MacEachren, A. M., Riveiro, M., & Schiewe, J. (2017). Evaluating the effect of visually represented geodata uncertainty on decision-making: Systematic review, lessons learned, and recommendations. Cartography and Geographic Information Science, 44 (1), 1–21. DOI logoGoogle Scholar
Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79 (1), 1–14. DOI logoGoogle Scholar
Kosminsky, D., Walny, J., Vermeulen, J., Knudsen, S., Willett, W., & Carpendale, S. (2019). Belief at first sight: Data visualization and the rationalization of seeing. Information Design Journal, 25 (1), 43–55.Google Scholar
Kurgan, L. (2013). Close Up at a Distance: Mapping, Technology, and Politics. MIT Press. DOI logoGoogle Scholar
Lockton, D., Ricketts, D., Aditya Chowdhury, S., & Lee, C. H. (2017). Exploring qualitative displays and interfaces. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 1844–1852. DOI logoGoogle Scholar
Loukissas, Y. A. (2016). A place for Big Data: Close and distant readings of accessions data from the Arnold Arboretum. Big Data & Society, 3 (2), 2053951716661365. DOI logoGoogle Scholar
(2019). All data are local: Thinking critically in a data-driven society. Cambridge, MA. The MIT Press. DOI logoGoogle Scholar
Meyer, M., & Dykes, J. (2019). Criteria for Rigor in Visualization Design Study. IEEE Transactions on Visualization and Computer Graphics. DOI logoGoogle Scholar
McCurdy, N., Gerdes, J., & Meyer, M. (2019). A Framework for Externalizing Implicit Error Using Visualization. IEEE Transactions on Visualization and Computer Graphics, 25 (1), 925–935. DOI logoGoogle Scholar
McInerny, G. (2018). Visualizing data: A view from design space. In Routledge Handbook of Interdisciplinary Research Methods (pp. 133–141). Routledge.
McNutt, A., Kindlmann, G., & Correll, M. (2020). Surfacing Visualization Mirages. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–16. DOI logoGoogle Scholar
Offenhuber, D. (2019). Data by Proxy – Material Traces as Autographic Visualizations. IEEE Transactions on Visualization and Computer Graphics, 26 (1), 98–108. DOI logoGoogle Scholar
R Core Team. (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria. R Foundation for Statistical Computing. [URL]
Ricker, B., Kraak, M.-J., & Engelhardt, Y. (2020). 24. The power of visualization choices: Different images of patterns in space. Data Visualization in Society, 4071. DOI logoGoogle Scholar
Roberts, J. C. (2007). State of the art: Coordinated & multiple views in exploratory visualization. Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007), 61–71. DOI logoGoogle Scholar
Simpson, J. (2020). 10. Visualizing data: A lived experience. Data Visualization in Society, 1571. DOI logoGoogle Scholar
Skeels, M., Lee, B., Smith, G., & Robertson, G. G. (2010). Revealing uncertainty for information visualization. Information Visualization, 9 (1), 70–81. DOI logoGoogle Scholar
Song, H., & Szafir, D. A. (2018). Where’s My Data? Evaluating Visualizations with Missing Data. IEEE Transactions on Visualization and Computer Graphics, 25 (1), 914–924. DOI logoGoogle Scholar
Urbanek, S. (2013). png: Read and write PNG images. [URL]
van Geenen, D., & Wieringa, M. (2020). 9. Approaching data visualizations as interfaces: An empirical demonstration of how data are imag (in) ed. Data Visualization in Society, 1411. DOI logoGoogle Scholar
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. [URL]. DOI logo
Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A Grammar of Data Manipulation. [URL]
Wilke, C. O. (2020). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” [URL]
Windhager, F., Salisu, S., Schreder, G., & Mayr, E. (2018). Orchestrating overviews: A synoptic approach to the visualization of cultural collections. Open Library of Humanities, 4 (2). DOI logoGoogle Scholar
Zeileis, A., Fisher, J., Hornik, K., Ihaka, R., McWhite, C., Murrell, P., Stauffer, R., & Wilke, C. (2020). colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. (96th ed., Vol. 11). Journal of Statistical Software. DOI logoGoogle Scholar