Article published In:
Information Design Journal
Vol. 27:3 (2022) ► pp.295308
References (43)
Bibliography
Arnheim, R. (1969). Visual thinking. University of California Press.Google Scholar
Ars Electronica. (2021, September 9). 3D Cartography of COVID-19 Research. Ars Electronica, a New Digital Deal. [URL]
Balazka, D., & Rodighiero, D. (2020). Big data and the little big bang: An epistemological (r)evolution. Frontiers in Big Data, 31, 31. DOI logoGoogle Scholar
Börner, K. (2010). Atlas of science: Visualizing what we know. MIT Press.Google Scholar
Börner, K., Maltese, A., Balliet, R. N., & Heimlich, J. (2016). Investigating aspects of data visualization literacy using 20 information visualizations and 273 science museum visitors. Information Visualization, 15(3), 198–213. DOI logoGoogle Scholar
Bostock, M., Ogievetsky, V., & Heer, J. (2011). D3: Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2301–2309. DOI logoGoogle Scholar
Coleman, N. (2021, February 21). On the front page, a wall of grief. The New York Times. [URL]
Cooper, M. (1989). Computers and Design. Design Quarterly, 1421, 1. DOI logoGoogle Scholar
D’Ignazio, C. (2017). Creative data literacy: Bridging the gap between the data-haves and data-have nots. Information Design Journal, 23(1), 6–18. DOI logoGoogle Scholar
D’Ignazio, C., & Bhargava, R. (2015). Approaches to building big data literacy. Proceedings of the Bloomberg Data for Good Exchange Conference.Google Scholar
Dondis, D. A. (1975). A primer of visual literacy. MIT Press. (Original work published 1973)Google Scholar
Feng, D., de Vlas, S. J., Fang, L.-Q., Han, X.-N., Zhao, W.-J., Sheng, S., Yang, H., Jia, Z.-W., Richardus, J. H., & Cao, W.-C. (2009). The SARS epidemic in mainland China: Bringing together all epidemiological data. Tropical Medicine & International Health, 141, 4–13. DOI logoGoogle Scholar
Freire, P. (2000). Pedagogy of the oppressed (M. Bergman Ramos, Trans.; 30th-anniversary edition ed.). Continuum. (Original work published 1970)Google Scholar
Galison, P. (Director). (2020). Black holes: The edge of all we know [Documentary]. Netflix. [URL]
Gray, J., Gerlitz, C., & Bounegru, L. (2018). Data infrastructure literacy. Big Data & Society, 5(2), 205395171878631–13. DOI logoGoogle Scholar
Hocking, J., & Schell, J. (2022). Unity in action: Multiplatform game development in C# (Third edition). Manning Publications Co.Google Scholar
Jandsl, M., & Stocker, G. (Eds.). (2021). Ars Electronica 2021. Festival for art, technology and society. Hatje Cantz Verlag.Google Scholar
Kanas, N. (2012). Star maps: History, artistry, and cartography (Second edition). Springer. DOI logoGoogle Scholar
Kaplan, F., & Lenardo, I. di. (2017). Big data of the past. Frontiers in Digital Humanities, 41, 769. DOI logoGoogle Scholar
Kenderdine, S. (2010). Immersive visualization architectures and situated embodiments of culture and heritage. 14th International Conference Information Visualisation, 408–414. DOI logo
Kenderdine, S., Mason, I., & Hibberd, L. (2021). Computational archives for experimental museology. 3–18. DOI logoGoogle Scholar
Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. SAGE Publications.Google Scholar
Latour, B. (2005). From realpolitik to dingpolitik: Or how to make the things public. In B. Latour & P. Weibel (Eds.), Making things public: Atmospheres of democracy. MIT Press.Google Scholar
Latour, B., & Weibel, P. (Eds.). (2005). Making things public: Atmospheres of democracy. MIT Press.Google Scholar
Loukissas, Y. A. (2019). All data are local: Thinking critically in a data-driven society. [URL]. DOI logo
Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(86), 2579–2605. [URL]
Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT Press.Google Scholar
Manovich, L. (2008). Data visualization as new abstraction and anti-sublime. In B. Hawk, D. M. Rieder, & O. O. Oviedo (Eds.), Small tech: The culture of digital tools. University of Minnesota Press.Google Scholar
Meirelles, I. (2013). Design for information: An introduction to the histories, theories, and best practices behind effective information visualizations. Rockport.Google Scholar
Moon, C. Y. E., & Rodighiero, D. (2020). Mapping as a contemporary instrument for orientation in conferences. Atti Del IX Convegno Annuale AIUCD. DOI logoGoogle Scholar
Papaki, E. (2020, December 10). DARIAH theme call 2020/2021: Meet the winning projects. DARIAH. [URL]
Petrovich, E. (2020). Science mapping. Encyclopedia of Knowledge Organization. [URL]
Rigal, A., & Joseph-Goteiner, D. (2021). The globalization of an interaction ritual chain: “Clapping for carers” during the conflict against COVID-19. Sociology of Religion, 82(4), 471–493. DOI logoGoogle Scholar
Rodighiero, D., & Romele, A. (2022, February 4). Reading network diagrams by using contour lines and word clouds. Proceeding of Graphs and Networks in the Humanities. DOI logoGoogle Scholar
Rodighiero, D., Wandl-Vogt, E., & Carsenat, E. (2021). Making visible the invisible work of scientists during the COVID-19 pandemic. Visual Culture Studies, 21, 143–165. DOI logoGoogle Scholar
(2022). A visual translation of the pandemic. Leonardo, 55(3), 297–303. DOI logoGoogle Scholar
Sick-Leitner, M. (2015, November 8). Deep Space 8K: the next generation. Ars Electronica Blog. [URL]
Sismondo, S. (2010). An introduction to science and technology studies (Second edition). Wiley-Blackwell. (Original work published 2004)Google Scholar
Van Der Spuy, R. (2015). Learn Pixi.js. Apress. DOI logoGoogle Scholar
Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197–208. DOI logoGoogle Scholar
Vanderplas, J. T. (2016). Python data science handbook: Essential tools for working with data. O’Reilly Media.Google Scholar
Wang, L. L., Lo, K., Chandrasekhar, Y., Reas, R., Yang, J., Burdick, D., Eide, D., Funk, K., Katsis, Y., Kinney, R., Li, Y., Liu, Z., Merrill, W., Mooney, P., Murdick, D., Rishi, D., Sheehan, J., Shen, Z., Stilson, B., … Kohlmeier, S. (2020). CORD-19: The COVID-19 Open Research Dataset. Proceedings of the Workshop on NLP for COVID-19 at ACL 2020. [URL]
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Santos, L. B. da S., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), e1002295–10. DOI logoGoogle Scholar