Article published in:
Information VisualizationEdited by Marian Dörk and Isabel Meirelles
[Information Design Journal 25:1] 2019
► pp. 71–86
Feeling numbers
The emotional impact of proximity techniques in visualization
Sarah Campbell | MIT
Dietmar Offenhuber | Northeastern University
For means of communication, persuasion is a natural and critical part of conveying a message. Data visualizations, being
means of communication themselves, are used as rhetorical instruments, but how they persuade has yet to be fully understood. Based on George
Campbell’s rhetorical theory, this paper presents the results of an empirical study testing the effectiveness of appeals to emotion through
proximity techniques – the contextual framing of a visualization. The findings indicate that people feel greater interest towards a topic
when the visualized data are more relevant to them, and that data representing events closer in time are more affecting.
Keywords: data visualization, rhetoric, pathos, emotion
Available under the Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 license.
For any use beyond this license, please contact the publisher at rights@benjamins.nl.
Published online: 16 March 2020
https://doi.org/10.1075/idj.25.1.06cam
https://doi.org/10.1075/idj.25.1.06cam
Full-text
References
References
Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., & Brooks, C.
Bateson, G.
Borgo, R., Abdul-Rahman, A., Mohamed, F., Grant, P. W., Reppa, I., Floridi, L., & Chen, M.
Borkin, M. A., Bylinskii, Z., Kim, N. W., Bainbridge, C. M., Yeh, C. S., Borkin, D., … Oliva, A.
Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H.
Boy, J., Pandey, A. V., Emerson, J., Satterthwaite, M., Nov, O., & Bertini, E.
Buchanan, R.
Campbell, G.
(1776) The philosophy of rhetoric. (vol. 1). London: W. Strahan. Retrieved from http://hdl.handle.net/2027/njp.32101061812242
Dörk, M., Feng, P., Collins, C., & Carpendale, S.
Epstein, S.
Funk, C., & Goo, S. K.
Haushofer, K.
Haroz, S., Kosara, R., & Franconeri, S. L.
Hoeken, H.
Holmes, N.
Hullman, J., & Diakopoulos, N.
Johnson, B. T., & Eagly, A. H.
Kogut, T., & Ritov, I.
Kostelnick, C.
Lee, S., Kim, S.-H., & Kwon, B. C.
Lee, S., Winterich, K. P., & Ross Jr., W. T.
Lumley, T., Diehr, P., Emerson, S., & Chen, L.
Muehlenhaus, I.
(2010) Lost in visualization: Using quantitative content analysis to identify, measure, and categorize political cartographic manipulations (Ph.D.). University of Minnesota, United States, Minnesota. Retrieved from https://search-proquest-com.ezproxy.neu.edu/docview/305207782/abstract/73A8DC04E3AD4FC2PQ/1
Pandey, A., Manivannan, A., Nov, O., Satterthwaite, M. L., & Bertini, E.
Pandey, A., Rall, K., Satterthwaite, M. L., Nov, O., & Bertini, E.
Riche, N. H., Hurter, C., Diakopoulos, N., & Carpendale, S.
Scherer, K. R.
Segel, E., & Heer, J.
Shelter Animals Count. The National Database Project
(2017) Retrieved from https://www.shelteranimalscount.org
Slovic, P.
Small, D. A., Loewenstein, G., & Slovic, P.
Tactical Technology Collective
(2014) Visualising Information for Advocacy (2nd ed.). Retrieved from http://visualisingadvocacy.org
Thudt, A., Perin, C., Willett, W., & Carpendale, S.
Vande Moere, A., Tomitsch, M., Wimmer, C., Christoph, B., & Grechenig, T.
Västfjäll, D., Slovic, P., Mayorga, M., & Peters, E.
Viegas, F. B., & Wattenberg, M.
Watzlawick, P., Bavelas, J. B., & Jackson, D. D.