Hybrid models for sense guessing of Chinese unknown words
This paper addresses the problem of classifying Chinese unknown words into fine-grained semantic categories defined in a Chinese thesaurus, Cilin (Mei et al. 1984). We present three novel knowledge-based models that capture the relationship between the semantic categories of an unknown word and those of its component characters in three different ways, and combine two of them with a corpus-based model that uses contextual information to classify unknown words. Experiments show that the combined knowledge-based model outperforms previous methods on the same task, but the use of contextual information does not further improve performance.
Cited by (2)
Cited by two other publications
Lu, Xiaofei & Renfen Hu
2021.
Sense-aware lexical sophistication indices and their relationship to second language writing quality.
Behavior Research Methods 54:3
► pp. 1444 ff.
Lu, Xiaofei
2014.
Summary and Outlook. In
Computational Methods for Corpus Annotation and Analysis,
► pp. 175 ff.
This list is based on CrossRef data as of 18 november 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.