Article published In:
International Journal of Learner Corpus Research
Vol. 6:1 (2020) ► pp.72103
References (65)
References
Abney, S. 2007. Semisupervised learning for computational linguistics. London: Chapman and Hall/CRC. DOI logoGoogle Scholar
Alexopoulou, T., Michel, M., Murakami, A., & Meurers, D. 2017. Task effects on linguistic complexity and accuracy: A large-scale learner corpus analysis employing natural language processing techniques. Language Learning, 67(S1), 180–208. DOI logoGoogle Scholar
Alexopoulou, T., Yannakoudakis, H., & Salamoura, A. 2013. Classifying intermediate learner English: a data-driven approach to learner corpora. In Twenty years of learner corpus research: Looking back, moving ahead (pp. 11–23). Belgium: Presses Universitaires de Louvain.Google Scholar
Attali, Y. & Burstein, J. 2006. Automated essay scoring with e-rater® v.2. The Journal of Technology, Learning and Assessment, 4(3).Google Scholar
Balikas, G. 2018. Lexical bias in essay level prediction. ArXiv e-prints.Google Scholar
Barker, F., Salamoura, A., & Saville, N. 2015. Learner corpora and language testing. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge Handbook of Learner Corpus Research (pp. 511–534). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Baur, C., Caines, A., Chua, C., Gerlach, J., Qian, M., Rayner, M., Russell, M., Strik, H., & Wei, X. 2018. Overview of the 2018 spoken CALL shared task. In Interspeech 2018, 2354–2358. Geneva: ISCA. DOI logoGoogle Scholar
Baur, C., Chua, C., Gerlach, J., Rayner, E., Russel, M., Strik, H., & Wei, X. 2017. Overview of the 2017 spoken CALL shared task. In Workshop on Speech and Language Technology in Education (SLaTE). Stockholm, Sweden. DOI logoGoogle Scholar
Boyd, A., Hana, J., Nicolas, L., Meurers, D., Wisniewski, K., Abel, A., Schöne, K., Stindlová, B., & Vettori, C. 2014. The MERLIN corpus: Learner language and the CEFR. In LREC, 1281–1288. Reykjavik, Iceland.Google Scholar
Callies, M. & Paquot, M. 2015. Learner corpus research: An interdisciplinary field on the move. International Journal of Learner Corpus Research, 1(1), 1–6. DOI logoGoogle Scholar
Chen, X. & Meurers, D. 2016. CTAP: A web-based tool supporting automatic complexity analysis. In Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC), 113–119.Google Scholar
Council of Europe (2001a. Common European Framework of Reference for Lan- guages: Learning, teaching, assessment. Strasbourg, Language Policy Division: Cambridge University Press.Google Scholar
(2001b. Common European Framework of Reference for Lan- guages: Learning, teaching, assessment. Structured overview of all CEFR scales. Strasbourg, Language Policy Division: Cambridge University Press.Google Scholar
(2018. Common European Framework of Reference for Languages: Learning, teaching, assessment; Companion volume with new descriptors. Strasbourg, Language Policy Division: Cambridge University Press.Google Scholar
Crossley, S. A., Salsbury, T., McNamara, D. S., & Jarvis, S. 2011. Predicting lexical proficiency in language learner texts using computational indices. Language Testing, 28(4), 561–580. DOI logoGoogle Scholar
Cushing Weigle, S. 2010. Validation of automated scores of TOEFL iBT tasks against non-test indicators of writing ability. Language Testing, 27(3), 335–353. DOI logoGoogle Scholar
Dahlmeier, D., Ng, H. T., & Wu, S. M. 2013. Building a large annotated corpus of learner English: The NUS corpus of learner English. In Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, 22–31. Association for Computational Linguistics. Atlanta, Georgia.Google Scholar
Dale, R. & Kilgarriff, A. 2011. Helping our own: The HOO 2011 pilot shared task. In Proceedings of the 13th European Workshop on Natural Language Generation, ENLG ’11, 242–249. Association for Computational Linguistics. Nancy, France.Google Scholar
Dale, R., Anisimoff, I., & Narroway, G. 2012. HOO 2012: A report on the preposition and determiner error correction shared task. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, NAACL HLT ’12, 54–62. Association for Computational Linguistics. Montreal, Canada.Google Scholar
Díaz-Negrillo, A., Ballier, N., & Thompson, P. 2013. Automatic treatment and analysis of learner corpus data. Amsterdam and Philadelphia: John Benjamins. DOI logoGoogle Scholar
Flach, P. 2012. Machine learning: The art and science of algorithms that make sense of data. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Friedman, J., Hastie, T., & Tibshirani, R. 2001. The elements of statistical learning, volume 1. New York: Springer Series in Statistics.Google Scholar
Geertzen, J., Alexopoulou, T., & Korhonen, A. 2013. Automatic linguistic annotation of large scale L2 databases: The EF-Cambridge open language database (EFCAMDAT). In Proceedings of the 31st Second Language Research Forum. Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Goldberg, Y. 2017. Neural network methods for natural language processing. synthesis lectures on human language technologies. San Rafael, CA: Morgan & Claypool Publishers.Google Scholar
Granger, S., Kraif, O., Ponton, C., Antoniadis, G., & Zampa, V. 2007. Integrating learner corpora and natural language processing: A crucial step towards reconciling technological sophistication and pedagogical effectiveness. ReCALL, 19(3), 252–268. DOI logoGoogle Scholar
Hawkins, J. A. & Buttery, P. 2010. Criterial features in learner corpora: Theory and illustrations. English Profile Journal, 1(01). DOI logoGoogle Scholar
Hawkins, J. A. & Filipović, L. 2012. Criterial features in L2 English: Specifying the reference levels of the Common European Framework, volume 1 of English Profile Studies. United Kingdom: Cambridge University Press.Google Scholar
Higgins, D., Ramineni, C., & Zechner, K. 2015. Learner corpora and automated scoring. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge Handbook of Learner Corpus Research (pp. 587–604). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Hopman, E., Thompson, B., Austerweil, J., & Lupyan, G. 2018. Predictors of L2 word learning accuracy: A big data investigation. In the 40th Annual Conference of the Cognitive Science Society (CogSci 2018), 513–518.Google Scholar
Jarvis, S. & Paquot, M. 2015. Learner corpora and native language identification. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge Handbook of Learner Corpus Research (pp. 605–628). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Jarvis, S. 2011. Data mining with learner corpora. In F. Meunier, S. De Cock, G. Gilquin, & M. Paquot (Eds.), A taste for corpora: In honour of Sylviane Granger (pp. 127–154). Amsterdam and Philadelphia: John Benjamins. DOI logoGoogle Scholar
Le, Q. V. & Mikolov, T. 2014. Distributed representations of sentences and documents. ArXiv: 1405.4053.Google Scholar
Leacock, C., Chodorow, M., Gamon, M., & Tetreault, J. 2010. Automated grammatical error detection for language learners. Synthesis Lectures on Human Language Technologies, 3(1), 1–134. DOI logoGoogle Scholar
Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. 2017. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, 2980–2988.Google Scholar
Lissón, P. & Ballier, N. 2018. Investigating learners’ progression in French as a foreign language: vocabulary growth and lexical diversity. CUNY Student Research Day. Poster.Google Scholar
Lissón, P. 2017. Investigating the use of readability metrics to detect differences in written productions of learners: a corpus-based study. Bellaterra Journal of Teaching & Learning Language & Literature, 10(4), 68–86. DOI logoGoogle Scholar
Liu, B. 2012. Sentiment analysis and opinion mining. San Rafael, CA: Morgan & Claypool Publishers. DOI logoGoogle Scholar
Lu, X. 2014. Computational methods for corpus annotation and analysis. New York: Springer. DOI logoGoogle Scholar
Magerman, D. M. 1995. Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, 276–283. Association for Computational Linguistics. DOI logoGoogle Scholar
Malmasi, S., Evanini, K., Cahill, A., Tetreault, J., Pugh, R., Hamill, C., Napolitano, D., & Qian, Y. 2017. A report on the 2017 native language identification shared task. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, 62–75. Association for Computational Linguistics. Copenhagen, Denmark. DOI logoGoogle Scholar
Meurers, D. 2015. Learner corpora and natural language processing. In S. Granger, G. Gilquin, & F. Meunier (Eds.), The Cambridge Handbook of Learner Corpus Research (pp. 537–566). Cambridge: Cambridge University Press. DOI logoGoogle Scholar
Michalke, M. 2017. koRpus: An R package for text analysis. (Version 0.10–2). Available at: [URL] (accessed October 2018).
Mons, B. 2018. Data stewardship for open science: Implementing FAIR principles. London: Chapman and Hall/CRC. DOI logoGoogle Scholar
Murakami, A. 2014. Individual variation and the role of L1 in the L2 development of English grammatical morphemes: Insights from learner corpora. PhD thesis, University of Cambridge.Google Scholar
2016. Modeling systematicity and individuality in nonlinear second language development: The case of English grammatical morphemes. Language Learning, 66(4), 834–871. DOI logoGoogle Scholar
Murphy, K. P. 2012. Machine learning. A probabilistic perspective. Adaptive Com- putation and Machine Learning. Cambridge (MA): MIT Press.Google Scholar
Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C. 2014. The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, 1–14. Association for Computational Linguistics. Baltimore, Maryland. DOI logoGoogle Scholar
Nissim, M., Abzianidze, L., Evang, K., van der Goot, R., Haagsma, H., Plank, B., & Wieling, M. 2017. Sharing is caring: The future of shared tasks. Computational Linguistics, 43(4), 897–904. DOI logoGoogle Scholar
O’Keeffe, A. & Mark, G. 2017. The English grammar profile of learner competence. International Journal of Corpus Linguistics, 22(4), 457–489. DOI logoGoogle Scholar
Page, E. B. 1968. The use of the computer in analyzing student essays. International Review of Education / Internationale Zeitschrift für Erziehungswissenschaft / Revue Internationale de l’Education, 14(2), 210–225.Google Scholar
Paquot, M. & Plonsky, L. 2017. Quantitative research methods and study quality in learner corpus research. International Journal of Learner Corpus Research, 3(1), 61–94. DOI logoGoogle Scholar
Paroubek, P., Chaudiron, S., & Hirschman, L. 2007. Principles of evaluation in natural language processing. Traitement Automatique des Langues, 48(1), 7–31.Google Scholar
Rich, A., Popp, P. O., Halpern, D., Rothe, A., & Gureckis, T. 2018. Modeling second-language learning from a psychological perspective. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, 223–230. DOI logoGoogle Scholar
Sang, E. F. & De Meulder, F. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. arXiv preprint cs/0306050, 142–147.Google Scholar
Settles, B. 2018. Data for the 2018 Duolingo shared task on second language acquisition modeling (SLAM). Available at: DOI logo. (accessed October 2018).Google Scholar
Settles, B., Brust, C., Gustafson, E., Hagiwara, M., & Madnani, N. 2018. Second language acquisition modeling. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, 56–65. DOI logoGoogle Scholar
Shermis, M. D., Burstein, J., Higgins, D., & Zechner, K. 2010. Automated essay scoring: Writing assessment and instruction”. In P. Peterson, E. Baker, & B. McGaw (Eds.), International Encyclopedia of Education (Third Edition) (pp. 20–26). Oxford: Elsevier. DOI logoGoogle Scholar
Tetreault, J., Burstein, J., Kochmar, E., Leacock, C., & Yannakoudakis, H. 2018. Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. Association for Computational Linguistics. New Orleans, Louisiana.Google Scholar
Thewissen, J. 2015. Accuracy across proficiency levels: A learner corpus approach. Louvain: Presses universitaires de Louvain.Google Scholar
Thrun, S. & Pratt, L. 1998. Learning to learn. Norwell, MA, USA: Kluwer Aca- demic Publishers. DOI logoGoogle Scholar
Vajjala, S. & Loo, K. 2014. Automatic CEFR level prediction for Estonian learner text. In NEALT Proceedings Series, volume 221, 113–128.Google Scholar
Volodina, E., Pilán, I. & Alfter, D. 2016. Classification of Swedish learner essays by CEFR levels. CALL Communities and Culture–Short Papers from EURO- CALL, 2016, 456–461.Google Scholar
Wisniewski, K. 2017. Empirical learner language and the levels of the Common European Framework of Reference. Language Learning, 67(S1), 232–253. DOI logoGoogle Scholar
Yannakoudakis, H., Briscoe, T., & Medlock, B. 2011. A New dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies – Volume 1, HLT ’11, 180–189. Association for Computational Linguistics.Google Scholar
Yannakoudakis, H., Kochmar, E., Leacock, C., Madnani, N., Pilán, I., & Zesch, T. 2019. Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications. Association for Computational Linguistics. Florence, Italy.Google Scholar
Cited by (10)

Cited by ten other publications

Gaillat, Thomas, Antoine Lafontaine & Anas Knefati
2023. Visualizing Linguistic Complexity and Proficiency in Learner English Writings. CALICO Journal 40:2  pp. 178 ff. DOI logo
Ruggia, Simona & Thomas Gaillat
2023. Les corpus numériques pour la didactique des langues : de la formation des enseignants à l’élaboration de dispositifs d’apprentissage . Corpus :24 DOI logo
Tran, Quynh, Krystsina Shpileuskaya, Elaine Zaunseder, Josef Salg, Larissa Putzar & Sven Blankenburg
2023. 2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII),  pp. 1 ff. DOI logo
Utami, Nabelanita & Fariska Zakhralativa Ruskanda
2023. 2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA),  pp. 1 ff. DOI logo
Gaillat, Thomas
2022. Investigating the scopes of textual metrics for learner level discrimination and learner analytics. In Complexity, Accuracy and Fluency in Learner Corpus Research [Studies in Corpus Linguistics, 104],  pp. 21 ff. DOI logo
Gaillat, Thomas, Andrew Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé & Manel Zarrouk
2022. Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach. ReCALL 34:2  pp. 130 ff. DOI logo
He, Haiyin, Darchia Maia & Muhammad Arif
2022. Application of Grammar Error Detection Method for English Composition Based on Machine Learning. Security and Communication Networks 2022  pp. 1 ff. DOI logo
Jimenez, Sergio, Fabio N Silva, George Dueñas & Alexander Gelbukh
2022. ProficiencyRank: Automatically ranking expertise in online collaborative social networks. Information Sciences 588  pp. 231 ff. DOI logo
Lyashevskaya, Olga, Olga Vinogradova & Anna Scherbakova
2022. Accuracy, syntactic complexity and task type at play in examination writing. In Complexity, Accuracy and Fluency in Learner Corpus Research [Studies in Corpus Linguistics, 104],  pp. 241 ff. DOI logo
Paquot, Magali & Marcus Callies
2020. Promoting methodological expertise, transparency, replication, and cumulative learning. International Journal of Learner Corpus Research 6:2  pp. 121 ff. DOI logo

This list is based on CrossRef data as of 17 october 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.