Article published in:
Interaction Studies
Vol. 15:1 (2014) ► pp. 137
References

References

Akgun, B., Dag, N., Bilal, T., Atil, I., & Sahin, E.. (
2009). Unsupervised learning of affordance relations on a humanoid robot. 24th International Symposium on Computer and Information Sciences (ISCIS), 254–259.Google Scholar
Akgun, B., Tunaoglu, D., & Sahin, E.. (
2010). Action recognition through an action generation mechanism. International Conference on Epigenetic Robotics.Google Scholar
Alissandrakis, A., Nehaniv, C., & Dautenhahn, K.. (
2003). Syn-chrony and perception in robotic imitation across embodiments. In Computational intelligence in robotics and automation, 2003. proceedings. 2003. ieee international symposium on (Vol. 2, pp. 923–930).
Ashby, F.G., & Maddox, W.T.. (
1993). Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology, 37(3), 372–400. CrossrefGoogle Scholar
Barsalou, L.. (
1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.Google Scholar
Bergquist, T., Schenck, C., Ohiri, U., Sinapov, J., Griffith, S., & Stoytchev, A.. (
2009). Interactive object recognition using pro-prioceptive feedback. IROS Workshop: Semantic Perception for Mobile Manipulation .
Borghi, A.M.. (
2007). Object concepts and embodiment: Why sensorimotor and cognitive processes cannot be separated. La nuova Critica, 15(4), 447–472.Google Scholar
2012). Action language comprehension, affordances and goals. InY. Coello & A. Bartolo(Eds.), Language and action in cognitive neuroscience. contemporary topics in cognitive neuroscience series (pp. 125–143). Psychology Press.Google Scholar
Borghi, A.M., & Riggio, L.. (
2009). Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Research, 1253, 117–128. CrossrefGoogle Scholar
Bruner, J., Goodnow, J., & Austin, G.. (
1986). A study of thinking. Transaction Publishers. Google Scholar
Cangelosi, A.. (
2001). Evolution of communication and language using signals, symbols, and words. IEEE Transactions on Evolutionary Computation, 5(2), 93–101. CrossrefGoogle Scholar
2010). Grounding language in action and perception: From cognitive agents to humanoid robots. Physics of Life Reviews, 7(2), 139–151. CrossrefGoogle Scholar
Cangelosi, A., & Harnad, S.. (
2001). The adaptive advantage of symbolic theft over sensorimotor toil: Grounding language in perceptual categories. Evolution of Communication, 4(1), 117–142. CrossrefGoogle Scholar
Cangelosi, A., Hourdakis, E., & Tikhanoff, V.. (
2006). Language acquisition and symbol grounding transfer with neural networks and cognitive robots. International Joint Conference on Neural Networks (IJCNN), 1576–1582.Google Scholar
Cangelosi, A., Metta, G., Sagerer, G., Nolfi, S., Nehaniv, C., Fischer, K., & Zeschel, A.. (
2010). Integration of action and language knowledge: A roadmap for developmental robotics. IEEE Transactions on Autonomous Mental Development, 2(3), 167–195. CrossrefGoogle Scholar
Cangelosi, A., & Parisi, D.. (
2004). The processing of verbs and nouns in neural networks: Insights from synthetic brain imaging. Brain and Language, 89(2), 401–408. CrossrefGoogle Scholar
Cangelosi, A., & Riga, T.. (
2006). An embodied model for sensorimotor grounding and grounding transfer: Experiments with epigenetic robots. Cognitive Science, 30(4), 673–689. CrossrefGoogle Scholar
Christiansen, M., & Kirby, S.. (
2003). Language evolution: Consensus and controversies. Trends in Cognitive Sciences, 7(7), 300–307. CrossrefGoogle Scholar
Cohen, P., Morrison, C., & Cannon, E.. (
2005). Maps for verbs: The relation between interaction dynamics and verb use. Proceedings of the 9th International Conference on Artificial Intelligence (ijcai).Google Scholar
Elsner, B.. (
2007). Infants’ imitation of goaldirected actions: The role of movements and action effects. Acta Psychologica, 124(1), 44–59. CrossrefGoogle Scholar
Fischer, M., & Zwaan, R.. (
2008). Embodied language: A review of the role of the motor system in language comprehension. The Quarterly Journal of Experimental Psychology, 61(6), 825–850. CrossrefGoogle Scholar
Gabora, L., Rosch, E., & Aerts, D.. (
2008). Toward an ecological theory of concepts. Ecological Psychology, 20(1), 84–116. CrossrefGoogle Scholar
Gallese, V., & Lakoff, G.. (
2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479. CrossrefGoogle Scholar
Gärdenfors, P.. (
2004). Conceptual spaces: The geometry of thought. The MIT Press.Google Scholar
Gibson, J.J.. (
1986). The ecologial approach to visual perception. Lawrence Erlbaum Associates.Google Scholar
Glenberg, A., & Kaschak, M.. (
2002). Grounding language in action. Psychonomic Bulletin and Review, 9(3), 558. CrossrefGoogle Scholar
Glenberg, A., & Robertson, D.. (
2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379–401. CrossrefGoogle Scholar
Glenberg, A., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D., & Buccino, G.. (
2008). Processing abstract language modulates motor system activity. The Quarterly Journal of Experimental Psychology, 61(6), 905–919. CrossrefGoogle Scholar
Hamilton, A., Grafton, S.., &
Hamilton, A. (2007). The motor hierarchy: from kinematics to goals and intentions. InP. Haggard, Y. Rossetti, & M. Kawato(Eds.), Sensorimotor foundations of higher cognition, attention and performance (pp. 381–408). Oxford University Press.
Harnad, S.. (
1990). The symbol grounding problem. Physica, D(42), 335–346.Google Scholar
Hashimoto, T., & Masumi, A.. (
2007). Learning and transition of symbols: Towards a dynamical model of a symbolic individual. InC.N.C. Lyon & A. Cangelos(Eds.), Emergence of communication and language (pp. 223–236). Springer. CrossrefGoogle Scholar
Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W.. (
2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Sciences, 24(05), 849–878. CrossrefGoogle Scholar
Jebara, T.. (
2004). Machine learning: Discriminative and generative (Vol. 755). Springer.Google Scholar
Johansen, M., & Kruschke, J.. (
2005). Category representation for classification and feature inference. Learning Memory, 31(6), 1433–1458. CrossrefGoogle Scholar
Kozima, H., Nakagawa, C., & Yano, H.. (
2002). Emergence of imitation mediated by objects. Lund University Cognitive Studies, 59–61.Google Scholar
Krunic, V., Salvi, G., Bernardino, A., Montesano, L., & Santos-Victor, J.. (
2009). Affordance based word-to-meaning association. IEEE Int. Conference on Robotics and Automation (ICRA), 4138–4143.
Kruschke, J.. (
2005). Category learning. In:K. Lamberts, & R.L. Goldstone(Eds.), The handbook of cognition, 183–201.Google Scholar
Leopold, D., O’Toole, A., Vetter, T., & Blanz, V.. (
2001). Prototypereferenced shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4(1), 89–94. CrossrefGoogle Scholar
Lyon, C., Nehaniv, C., & Cangelosi, A.. (
2007). Emergence of communication and language. Springer-VerlagNew York Inc. CrossrefGoogle Scholar
Mahalanobis, P.. (
1936). On the generalized distance in statistics. In Proceedings of the National Institute of Sciences of India (Vol. 2, pp. 49–55).
Marocco, D., Cangelosi, A., Fischer, K., & Belpaeme, T.. (
2010). Grounding action words in the sensorimotor interaction with the world: Experiments with a simulated iCub humanoid robot. Frontiers in Neurorobotics, 4(7), 1–15.Google Scholar
Metta, G., & Fitzpatrick, P.. (
2003). Better vision through manipulation. Adaptive Behavior, 11(2), 109–128. CrossrefGoogle Scholar
Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F.. (
2008). The iCub humanoid robot: An open platform for research in embodied cognition. In Proceedings ofthe 8th workshop on performance metrics for intelligent systems (pp. 50–56).
Minda, J., & Smith, J.. (
2001). Prototypes in category learning: The effects of category size, category structure, and stimulus com-plexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(3), 775–799. CrossrefGoogle Scholar
Montesano, L., Lopes, M., Bernardino, A., & Santos-Victor, J.. (
2008). Learning object affordances: From sensory-motor co-ordination to imitation. IEEE Transactions on Robotics, 24(1), 15–26. CrossrefGoogle Scholar
Montesano, L., Lopes, M., Melo, F., Bernardino, A., & Santos-Victor, J.. (
2009). A computational model of object affordances. Advances in Cognitive Systems.Google Scholar
Nehaniv, C.L., Lyon, C., & Cangelosi, A.. (
2007). Current work and open problems: A road-map for research into the emergence of communication and language. InC.L.N.C. Lyon, & A. Cangelosi(Eds.), Emergence of communication and language (pp. 1–27). Springer. CrossrefGoogle Scholar
Nosofsky, R., Kruschke, J., & McKinley, S.. (
1992). Combining exemplar-based category representations and connectionist learning rules. Learning, Memory, 18(2), 211–233. CrossrefGoogle Scholar
Nosofsky, R., & Zaki, S.. (
2002). Exemplar and prototype models revisited: Response strategies, selective attention, and stimulus generalization. Learning Memory, 28(5), 924–940. CrossrefGoogle Scholar
Parthemore, J., & Morse, A.. (
2010). Representations reclaimed: Accounting for the co-emergence of concepts and experience. Pragmatics and Cognition, 18(2), 273–312. CrossrefGoogle Scholar
Qin, A., & Suganthan, P.. (
2004). Robust growing neural gas algorithm with application in cluster analysis. Neural Networks, 17(8–9), 1135–1148. CrossrefGoogle Scholar
Rosch, E.. (
1973). Natural categories. Cognitive Psychology, 4(3), 328–350. CrossrefGoogle Scholar
Rosseel, Y.. (
2002). Mixture models of categorization. Journal of Mathematical Psychology, 46(2), 178–210. CrossrefGoogle Scholar
Rouder, J., & Ratcliff, R.. (
2006). Comparing exemplar-and rule-based theories of categorization. Current Directions in Psychological Science, 15(1), 9–13. CrossrefGoogle Scholar
Rudolph, M., Muhlig, M., Gienger, M., & Bohme, H.-J.. (
2010). Learning the consequences of actions: Representing effects as feature changes. Int. Symposium on Learning and Adaptive Behavior in Robotic Systems .
Rusu, R.B., & Cousins, S.. (
2011). 3d is here: Point cloud library (pcl). Library, 26(2), 1–4.Google Scholar
Sahin, E., Cakmak, M., Dogar, M., Ugur, E., & Ucoluk, G.. (
2007). To afford or not to afford: A new formalization of affordances toward affordance-based robot control. Adaptive Behavior, 15(4), 447–472. CrossrefGoogle Scholar
Steels, L.. (
2003). Evolving grounded communication for robots. Trends in Cognitive Science, 7(7), 308–312. CrossrefGoogle Scholar
2007). The recruitment theory of language origins. InC.L.N.C. Lyon, & A. Cangelosi(Eds.), Emergence of communication and language (pp. 129–150). Springer. CrossrefGoogle Scholar
Ug̃ur, E., Sahin, E., & Oztop, E.. (
2009). Affordance learning from range data for multi-step planning. 9th International Conference on Epigenetic Robotics (Epirob) , 146, 177–184.
Uğur, E., & Şahin, E.. (
2010). Traversability: A case study for learning and perceiving affordances in robots. Adaptive Behavior, 18(3–4), 258–284. CrossrefGoogle Scholar
Umilta, M., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., Jezzini, A., & Rizzolatti, G.. (
2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, 105(6), 2209. CrossrefGoogle Scholar
Umilta, M., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G.. (
2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–165. CrossrefGoogle Scholar
Verguts, T., Ameel, E., & Storms, G.. (
2004). Measures of similarity in models of categorization. Memory and Cognition, 32(3), 379. CrossrefGoogle Scholar
Want, S.C., & Harris, P.L.. (
2002). How do children ape? Applying concepts from the study of non-human primates to the developmental study of imitation in children. Developmental Science, 5(1), 1–13. CrossrefGoogle Scholar
Zwaan, R., & Taylor, L.. (
2006). Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology-General, 135(1), 1–11. CrossrefGoogle Scholar
Cited by

Cited by 19 other publications

Bozcan, İlker & Sinan Kalkan
2019. COSMO: Contextualized scene modeling with Boltzmann Machines. Robotics and Autonomous Systems 113  pp. 132 ff. Crossref logo
Celikkanat, Hande, Guner Orhan & Sinan Kalkan
2015. A Probabilistic Concept Web on a Humanoid Robot. IEEE Transactions on Autonomous Mental Development 7:2  pp. 92 ff. Crossref logo
Celikkanat, Hande, Guner Orhan, Nicolas Pugeault, Frank Guerin, Erol Sahin & Sinan Kalkan
2014.  In 4th International Conference on Development and Learning and on Epigenetic Robotics,  pp. 201 ff. Crossref logo
Celikkanat, Hande, Guner Orhan, Nicolas Pugeault, Frank Guerin, Erol Sahin & Sinan Kalkan
2016. Learning Context on a Humanoid Robot using Incremental Latent Dirichlet Allocation. IEEE Transactions on Cognitive and Developmental Systems 8:1  pp. 42 ff. Crossref logo
Celikkanat, Hande, Erol Sahin & Sinan Kalkan
2015.  In 2015 International Conference on Advanced Robotics (ICAR),  pp. 259 ff. Crossref logo
Gardenfors, Peter
2020. An Epigenetic Approach to Semantic Categories. IEEE Transactions on Cognitive and Developmental Systems 12:2  pp. 139 ff. Crossref logo
Gharaee, Zahra, Peter Gardenfors & Magnus Johnsson
2016.  In 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS),  pp. 538 ff. Crossref logo
Gharaee, Zahra, Peter Gärdenfors & Magnus Johnsson
2017. First and second order dynamics in a hierarchical SOM system for action recognition. Applied Soft Computing 59  pp. 574 ff. Crossref logo
Gharaee, Zahra, Peter Gärdenfors & Magnus Johnsson
2017. Online recognition of actions involving objects. Biologically Inspired Cognitive Architectures 22  pp. 10 ff. Crossref logo
Gärdenfors, Peter
2019. Using Event Representations to Generate Robot Semantics. ACM Transactions on Human-Robot Interaction 8:4  pp. 1 ff. Crossref logo
Gärdenfors, Peter
2020. Primary Cognitive Categories Are Determined by Their Invariances. Frontiers in Psychology 11 Crossref logo
Jamone, Lorenzo, Emre Ugur, Angelo Cangelosi, Luciano Fadiga, Alexandre Bernardino, Justus Piater & Jose Santos-Victor
2018. Affordances in Psychology, Neuroscience, and Robotics: A Survey. IEEE Transactions on Cognitive and Developmental Systems 10:1  pp. 4 ff. Crossref logo
Min, Huaqing, Chang'an Yi, Ronghua Luo, Jinhui Zhu & Sheng Bi
2016. Affordance Research in Developmental Robotics: A Survey. IEEE Transactions on Cognitive and Developmental Systems 8:4  pp. 237 ff. Crossref logo
Olier, Juan Sebastian, Emilia Barakova, Carlo Regazzoni & Matthias Rauterberg
2017. Re-framing the characteristics of concepts and their relation to learning and cognition in artificial agents. Cognitive Systems Research 44  pp. 50 ff. Crossref logo
Pandey, Amit Kumar & Rodolphe Gelin
2015.  In 2015 International Conference on Advanced Robotics (ICAR),  pp. 642 ff. Crossref logo
Petit, Maxime, Grégoire Pointeau & Peter Ford Dominey
2016. Reasoning based on consolidated real world experience acquired by a humanoid robot. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 17:2  pp. 248 ff. Crossref logo
Stramandinoli, Francesca, Vadim Tikhanoff, Ugo Pattacini & Francesco Nori
2016.  In 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob),  pp. 79 ff. Crossref logo
Yi, Chang'an, Huaqing Min, Jinhui Zhu & Pengshuai Yin
2016.  In 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO),  pp. 88 ff. Crossref logo
Zhong, Junpei, Tetsuya Ogata, Angelo Cangelosi & Chenguang Yang
2019. Disentanglement in conceptual space during sensorimotor interaction. Cognitive Computation and Systems 1:4  pp. 103 ff. Crossref logo

This list is based on CrossRef data as of 14 september 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.