Article published in:
How the Brain Got Language: Towards a New Road Map
Edited by Michael A. Arbib
[Interaction Studies 19:1/2] 2018
► pp. 86101


Ackermann, H., Hage, S. R., & Ziegler, W.
(2014) Brain mechanisms of acoustic communication in humans and nonhumans primates: An evolutionary perspective. Behavioral and Brain Sciences, 37, 529–604.CrossrefGoogle Scholar
Arbib, M. A.
(2016) Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain. Physics of Life Reviews, 16, 1–54.CrossrefGoogle Scholar
Arbib, M. A., & Fellous, J. -M.
(2004) Emotions: from brain to robot. Trends in Cognitive Sciences, 8(12), 554–561.CrossrefGoogle Scholar
Armony, J. L., & LeDoux, J. E.
(2010) Emotional responses to auditory stimuli. In A. Rees & A. R. Palmer (Eds.), The Oxford Handbook of Auditory Science: The Auditory Brain, Vol. 2 (pp. 479–505). Oxford: Oxford University Press.Google Scholar
Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., & Korenberg, J. R.
(1999) Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends in Neurosciences, 22(5), 197–207.CrossrefGoogle Scholar
Brown, S.
(2017) A Joint Prosodic Origin of Language and Music. Frontiers in Psychology, 8(1894).CrossrefGoogle Scholar
Cross, I.
(2014) Music and communication in music psychology. Psychology of Music, 42(6), 809–819.CrossrefGoogle Scholar
Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S.
(2017) Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience, 358, 300–315.CrossrefGoogle Scholar
Filippi, P.
(2016) Emotional and Interactional Prosody across Animal Communication Systems: A Comparative Approach to the Emergence of Language. Frontiers in Psychology, 7(1393).CrossrefGoogle Scholar
Fitch, W. T.
(2015) The Biology and Evolution of Musical Rhythm: An Update. In I. Toivonen, P. Csúri, & E. van der Zee (Eds.), Structures in the Mind: Essays on Language, Music, and Cognition in Honor of Ray Jackendoff (pp. 293–323). Cambridge, MA: The MIT Press.Google Scholar
Frühholz, S., Trost, W., & Kotz, S. A.
(2016) The sound of emotions – Towards a unifying neural network perspective of affective sound processing. Neuroscience & Biobehavioral Reviews, 68, 96–110.CrossrefGoogle Scholar
Honing, H.
(Ed.) (2018) The Origins of Musicality. Cambridge, MA: The MIT PressGoogle Scholar
Jantzen, M. G., Large, E. W., & Magne, C.
(Eds.) (2016) Overlap of Neural Systems for Processing Language and Music. s. l.: Frontiers in Psychology / Frontiers in Neuroscience.CrossrefGoogle Scholar
Juslin, P. J., Liljeström, S., Västfjäll, D., & Lundquist, L. -O.
(2010) How does music evoke emotions? Exploring the underlying mechanisms. In P. Juslin & J. A. Sloboda (Eds.), Music and Emotion: Theory, Research, Applications (pp. 605–642). Oxford: Oxford University Press.[ p. 100 ]Google Scholar
Killin, A.
(2017) Where did language come from? Connecting sign, song, and speech in hominin evolution. Biological & Philosophy.CrossrefGoogle Scholar
Kirschner, S., & Tomasello, M.
(2010) Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31, 354–364.CrossrefGoogle Scholar
Koelsch, S.
(2014) Brain correlates of music-evoked emotions. Nature Review Neuroscience, 15(3), 170–180.CrossrefGoogle Scholar
Lawergren, B.
(1988) The Origin of Musical Instruments and Sounds. Anthropos, 83(1/3), 31–45.Google Scholar
Lewis, J.
(2013) A cross-cultural perspective on the significance of music and dance to culture and society. In M. A. Arbib (Ed.), Language, Music, and the Brain: A Mysterious Relationship (pp. 45–65). Cambridge, MA: The MIT Press.Google Scholar
Margulis, E. H.
(2013) Repetition and Emotive Communication in Music Versus Speech. Frontiers in Psychology, 4, 167.CrossrefGoogle Scholar
Maynard Smith, J., & Harper, D.
(2003) Animal Signals. Oxford: Oxford University Press.Google Scholar
Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., & Fitch, W. T.
(2015) Finding the beat: a neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140093.CrossrefGoogle Scholar
Merchant, H., & Honing, H.
(2014) Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 7(274).CrossrefGoogle Scholar
Merker, B.
(2015) Seven Theses on the Biology of Music and Language. Signata, 6, 195–215.CrossrefGoogle Scholar
Merker, B. H.
(2000) The birth of music in synchronous chorusing at the hominid-chimpanzee split. Paper presented at the International Conference on Music Perception and Cognition 2000.
Montagu, J.
(2017) How Music and Instruments Began: A Brief Overview of the Origin and Entire Development of Music, from Its Earliest Stages. Frontiers in Sociology, 2, 8.CrossrefGoogle Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H.
(2015) Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition. Neuron, 88, 1281–1296.CrossrefGoogle Scholar
Patel, A. D.
(2014) The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong? PLOS Biology, 12(3), e1001821.CrossrefGoogle Scholar
Powers, H.
(2003) Rhythm. In D. M. Randel (Ed.), The Harvard Dictionary of Music. Fourth Edition (pp. 723–729). Cambridge, MA: Belnap Press.Google Scholar
Rauschecker, J. P.
(2013) Brain networks for the encoding of emotions in communication sounds of human and nonhuman primates. In E. Altenmüller, S. Schmidt, & E. Zimmermann (Eds.), Evolution of Emotional Communication: From Sounds in Nonhuman Mammals to Speech and Music in Man (pp. 49–62). Oxford: Oxford University Press.CrossrefGoogle Scholar
Rauschecker, J. P., & Scott, S. K.
(2016) Chapter 24 – Pathways and Streams in the Auditory Cortex: An Update on How Work in Nonhuman Primates has Contributed to Our Understanding of Human Speech Processing A2 – Hickok, Gregory. In S. L. Small (Ed.), Neurobiology of Language (pp. 287–298). San Diego: Academic Press.Crossref[ p. 101 ]Google Scholar
Ravignani, A., Honing, H., & Kotz, S. A.
(Eds.) (2017) The Evolution of Rhythm Cognition: Timing in Music and Speech. s. l.: Frontiers in Human Neuroscience.CrossrefGoogle Scholar
Remedios, R., Logothetis, N. K., & Kayser, C.
(2009) Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. PNAS, 106(2), 1810–1815.Google Scholar
Sammler, D., Grosbras, M. -H., Anwander, A., Bestelmeyer, P. E. G., & Belin, P.
(2015) Dorsal and Ventral Pathways for Prosody. Current Biology, 25, 3079–3085.CrossrefGoogle Scholar
Schaefer, H. -E.
(2017) Music-Evoked Emotions – Current Studies. Frontiers in Neuroscience, 11(600).CrossrefGoogle Scholar
Schäfer, T., Sedlmaier, P., Städtler, C., & Huron, D.
(2013) The Psychological Functions of Music Listening. Frontiers in Psychology, 4(511), 1–33.Google Scholar
Scharff, C., Friederici, A. D., & Petrides, M.
(Eds.) (2013) Neurobiology of Human Language and Its Evolution: Primate and Non-Primate Perspectives. s. l.: Frontiers in Evolutionary Neuroscience.Crossref.Google Scholar
Schulkin, J., & Raglan, G. B.
(2014) The evolution of music and human social capability. Frontiers in Neuroscience, 8, 292.CrossrefGoogle Scholar
Seifert, U., Verschure, P. F. M. J., Arbib, M. A., Cohen, A. J., Fogassi, L., Fritz, T., … Scherer, K.
(2013) Semantics of Internal and External Worlds. In M. A. Arbib (Ed.), Language, Music, and the Brain: A Mysterious Relationship, Strüngmann Forum Reports, vol. 10. (pp. 203–229) Cambridge, MA: MIT Press.Google Scholar
Tarr, B., Launay, J., & Dunbar, R. I. M.
(2014) Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5, 1096.CrossrefGoogle Scholar
Toussaint, G. T.
(2013) The Geometry of Musical Rhythm: What Makes a “Good” Rhythm Good? Boca Raton: CRC Press.Google Scholar
Trost, W. J., Labbé, C., & Grandjean, D.
(2017) Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, 96, 96–110.CrossrefGoogle Scholar
Vuust, P., & Kringelbach, M. L.
(2010) The Pleasure of Music. In M. L. Kringelbach & K. C. Berridge (Eds.), Pleasures of the Brain (pp. 255–269). Oxford: Oxford University Press.Google Scholar
Wang, T.
(2015) A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9(30), 1–10.Google Scholar
Wallaschek, R.
(1891) On the Origin of Music. Mind, 16(63), 375–386.CrossrefGoogle Scholar
Cited by

Cited by 2 other publications

Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2018. The comparative neuroprimatology 2018 (CNP-2018) road map for research on How the Brain Got Language . Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 19:1-2  pp. 370 ff. Crossref logo
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael C. Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby S. Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2020.  In How the Brain Got Language – Towards a New Road Map [Benjamins Current Topics, 112],  pp. 370 ff. Crossref logo

This list is based on CrossRef data as of 11 april 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.