Plasticity, innateness, and the path to language in the primate brain
Comparing macaque, chimpanzee and human circuitry for visuomotor integration
Many researchers consider language to be definitionally unique to humans. However, increasing evidence suggests that language emerged via a series of adaptations to neural systems supporting earlier capacities for visuomotor integration and manual action. This paper reviews comparative neuroscience evidence for the evolutionary progression of these adaptations. An outstanding question is how to mechanistically explain the emergence of new capacities from pre-existing circuitry. One possibility is that human brains may have undergone selection for greater plasticity, reducing the extent to which brain organization is hard-wired and increasing the extent to which it is shaped by socially transmitted, learned behaviors. Mutations that made these new abilities easier or faster to learn would have undergone positive selection, and over time, the neural changes once associated with individual neural plasticity would tend to become heritable, innate, and fixed. Clearly, though, language is not entirely “innate;” it does not emerge without the requisite environmental input and experience. Thus, a mechanistic explanation for the evolution of language must address the inherent trade-off between the evolutionary pressure for underlying neural systems to be flexible and sensitive to environmental input vs. the tendency over time for continually adaptive behaviors to become reliably expressed in an early-emerging, canalized, less flexible manner.
Article outline
- Introduction: Comparative neuroscience, exaptation, and language
- LCA-m: Early primate adaptations for the visual control of action
- LCA-c: Hominid dorsal stream adaptations for social transmission of learned skills
- Human-specific adaptations: Integrating cognitive control and action sequencing with high-fidelity representations of action details
- The chicken or the egg: Continuity, divergence, and the environmental context for change in brain-behavior evolution
- Flexibility and environmental sensitivity
- Specificity and innateness
- Toward a new road map
- Acknowledgements
-
References
References (69)
References
Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knosche, T. R. (2007). Connectivity-Based Parcellation of Broca’s Area. Cereb Cortex, 17(4), 816–825.
Arbib, M. (2012). How the Brain Got Language: Oxford University Press.
Baldwin, J. Mark. (1896). A New Factor in Evolution. The American Naturalist, 30(354), 441–451.
Bateson, P. (2004). The active role of behaviour in evolution. Biol Phi/as, 19(2), 283–298.
Bogin, B. (1997). Evolutionary Hypotheses for Human Childhood. Yearbook of Physical Anthropology, 401, 63–89
Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends Cogn Sci, 17(12), 648–665.
Byrne, R. W., Hobaiter, C., & Klailova, M. (2011). Local traditions in gorilla manual skill: evidence for observational learning of behavioral organization. Anim Cogn, 14(5), 683–693.
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167.
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: the perception-behavior link and social interaction. J Pers Soc Psycho/, 76(6), 893–910.
Denys, K., Vanduffel, W., Fize, O., Nelissen, K., Sawamura, H., Georgieva, S., … Orban, G. A. (2004). Visual activation in prefrontal cortex is stronger in monkeys than in humans. J Cogn Neurosci, 16(9), 1505–1516.
Finlay, B. L., Hinz, F., & Darlington, R. B. (2011). Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species. Phi/as Trans R Soc Land B Biol Sci, 366(1574), 2111–2123.
Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron, 65(6), 795–814.
Flechsig, P. E. (1920). Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Grundlage. G. Thieme (in German).
Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Res Cogn Brain Res, 23(2–3), 397–405.
Galaburda, A. M., Rosen, G. D., & Sherman, G. F. (1990). Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsycho/ogia, 28(6), 529–546.
Gomez-Robles, A., Hopkins, W. D., Schapiro, S. J., & Sherwood, C. C. (2015). Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci U S A, 112(48), 14799–14804.
Gomez-Robles, A., Hopkins, W. D., & Sherwood, C. C. (2013). Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc Biol Sci, 280(1761), 20130575.
Gomez-Robles, A., Hopkins, W. D., & Sherwood, C. C. (2014). Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun, 51, 4469.
Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., … Groves, C. P. (1998). Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol, 9(3), 585–598.
Greenfield, P. M. (1991). Language, tools, and brain: the development and evolution of hierarchically organized sequential behavior. Behav. Brain Sci., 141, 531–595.
Gruber, T., Singleton, I., & van Schaik, C. (2012). Sumatran orangutans differ in their cultural knowledge but not in their cognitive abilities. Curr Biol, 22(23), 2231–2235.
Hayes, K. J., & Hayes, C. (1952). Imitation in a home-raised chimpanzee. J Comp Physio/ Psycho/, 45(5), 450–459.
Hecht, E. (2016). Adaptations to vision-for-action in primate brain evolution: Comment on “Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain” by Michael A. Arbib. Phys Life Rev, 161, 74–76.
Hecht, E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 1081, 124–137.
Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 1081, 124–137.
Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., … Stout, D. (2015). Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions. Brain Struct Funct, 220(4), 2315–2331.
Hecht, E. E., Gutman, D. A., Preuss, T. M., Sanchez, M. M., Parr, L. A., & Rilling, J. K. (2013). Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cereb Cortex, 23(5), 1014–1024.
Hecht, E. E., Murphy, L. E., Gutman, D. A., Votaw, J. R., Schuster, D. M., Preuss, T. M., … Parr, L. A. (2013). Differences in neural activation for object-directed grasping in chimpanzees and humans. J Neurosci, 33(35), 14117–14134.
Hill, J., lnder, T., Neil, J., Dierker, D., Harwell, J., & Van Essen, D. (2010). Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci US A, 107(29), 13135–13140.
Hopkins, W. D., Russell, J. L., & Cantalupo, C. (2007). Neuroanatomical correlates of handedness for tool use in chimpanzees (Pan troglodytes): implication for theories on the evolution of language. Psycho/ Sci, 18(11), 971–977.
Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Anim Cogn, 8(3), 164–181.
Inoue-Nakamura, N., & Matsuzawa, T. (1997). Development of stone tool use by wild chimpanzees (Pan troglodytes). J Comp Psycho/, 111(2), 159–173.
Kaas, J. H. (2012). The evolution of neocortex in primates. Prag Brain Res, 1951, 91–102.
Kanai, R., Dong, M. Y., Bahrami, B., & Rees, G. (2011). Distractibility in daily life is reflected in the structure and function of human parietal cortex. J Neurosci, 31(18), 6620–6626.
Kaneko, T., & Tomonaga, M. (2012). Relative contributions of goal representation and kinematic information to self-monitoring by chimpanzees and humans. Cognition, 125(2), 168–178.
Human-specific transcriptional networks in the brain. Neuron, 75(4), 601–617.
Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64(6), 922–930.
Marshall-Pescini, S., & Whiten, A. (2008). Chimpanzees (Pan troglodytes) and the question of cumulative culture: an experimental approach. Anim Cogn, 11(3), 449–456.
Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., … Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci US A, 109(41), 16480–16485.
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci Biobehav Rev, 33(7), 975–980.
Ojemann, G. A. (1991). Cortical organization of language. J Neurosci, 11(8), 2281–2287.
Osborn, H. F. (1896). A mode of evolution requiring neither natural selection nor the inheritance of acquired characters. Transactions of the New York Academy of Sciences, 151, 141–148.
Paukner, A., Suomi, S. J., Visalberghi, E., & Ferrari, P. F. (2009). Capuchin monkeys display affiliation toward humans who imitate them. Science, 325(5942), 880–883.
Peeters, R., Simone, L., Nelissen, K., Fabbri-Destro, M., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2009). The representation of tool use in humans and monkeys: common and uniquely human features. J Neurosci, 29(37), 11523–11539.
Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Land B Biol Sci, 360(1456), 781–795.
Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci, 16(2), 291–310.
Petrides, M., & Pandya, D. N. (2009). Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol, 7(8), e1000170.
Preuss, T. M., Caceres, M., Oldham, M. C., & Geschwind, D. H. (2004). Human brain evolution: insights from microarrays. Nat Rev Genet, 5(11), 850–860.
Pulvermuller, F., & Fadiga, L. (2010). Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci, 11(5), 351–360.
Raos, V., Evangeliou, M. N., & Savaki, H. E. (2004). Observation of action: grasping with the mind’s hand. Neuroimage, 23(1), 193–201.
Raos, V., Evangeliou, M. N., & Savaki, H. E. (2007). Mental simulation of action in the service of action perception. J Neurosci, 27(46), 12675–12683.
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 3(2), 131–141.
Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Stadler, A., Ronen, A., & Nevo, E. (2015). Preparation and use of varied natural tools for extractive foraging by bonobos (Pan Paniscus). Am J Phys Anthropol, 158(1), 78–91.
Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., & Luppino, G. (2006). Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cortex, 16(10), 1389–1417.
Ryan, S., Bonilha, L., & Jackson, S. R. (2006). Individual variation in the location of the parietal eye fields: a TMS study. Exp Brain Res, 173(3), 389–394.
Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., & Semendeferi, K. (2008). A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neural, 510(1), 117–128.
Sclafani, V., Paukner, A., Suomi, S. J., & Ferrari, P. F. (2015). Imitation promotes affiliation in infant macaques at risk for impaired social behaviors. Dev Sci, 18(4), 614–621.
Stout, D., & Chaminade, T. (2012). Stone tools, language and the brain in human evolution. Philos Trans R Soc Land B Biol Sci, 367(1585), 75–87.
Stout, D., Passingham, R., Frith, C., Apel, J., & Chaminade, T. (2011). Technology, expertise and social cognition in human evolution. Eur J Neurosci, 33(7), 1328–1338.
Stout, D., Toth, N., Schick, K., & Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Land B Biol Sci, 363(1499), 1939–1949.
Sussman, R. W., Tab Rasmussen, D., & Raven, P. H. (2013). Rethinking primate origins again. Am J Primato/, 75(2), 95–106.
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing. A neurophysiological study. Neuron, 31(1), 155–165. [pii]
van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: implications for the evolution of material culture. J Hum Evol, 36(6), 719–741.
Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J. T., & Orban, G. A. (2002). Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 298(5592), 413–415.
Visalberghi, E., & Fragaszy, D. M. (2002). “Do Monkeys Ape?” Ten Years After. In C. N. K. Dautenhahn (Ed.), Imitation in animals and artefacts (pp. 471–499). Cambridge, MA: MIT Press.
Weber, Bruce H., & Depew, David J. (Eds.). (2003). Evolution and learning: the Baldwin effect reconsidered. Cambridge, Mass.: MIT Press.
Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M. (2009). Emulation, imitation, overimitation and the scope of culture for child and chimpanzee. Philos Trans R Soc Lond B Biol Sci, 364(1528), 2417–2428.
Yakovlev, P. I., & Lecours, A. R. (1966). The myelinogenic cycles of regional maturation of the brain. In A. Minkovski (Ed.), Regional Development of the Brain in Early Life (pp. 3–70). Oxford, UK: Blackwell.
Zhong, Y. M., & Rockland, K. S. (2003). Inferior parietal lobule projections to anterior inferotemporal cortex (area TE) in macaque monkey. Cereb Cortex, 13(5), 527–540.
Cited by (2)
Cited by two other publications
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael C. Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby S. Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
This list is based on CrossRef data as of 6 august 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.