Article published in:
How the Brain Got Language: Towards a New Road Map
Edited by Michael A. Arbib
[Interaction Studies 19:1/2] 2018
► pp. 102120


Adolphs, R.
(2001) The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.CrossrefGoogle Scholar
(2009) The Social Brain: Neural Basis of Social Knowledge. Annu Rev Psychol, 60, 693–716.CrossrefGoogle Scholar
(2017) How should neuroscience study emotions? By distinguishing emotion states, concepts, and experiences Social Cognitive and Affective Neuroscience, 24–31.Google Scholar
Allman, J., Hakeem, A., Watson, K.
(2002) Two phylogenetic specializations in the human brain. Neuroscientist 8 (4), 335–346.CrossrefGoogle Scholar
Allman, J. M., Tetreault, N. A., Hakeem, A. Y., et al.
(2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct. Funct. 214 (5–6), 495–517.Crossref[ p. 117 ]Google Scholar
Anderson, D. J., & Adolphs, R.
(2014) A Framework for Studying Emotions across Species. Cell, 157(1), 187–200.CrossrefGoogle Scholar
Antonell, A., de Luis, O., Domingo-Roura, X., Pérez-Jurado, L. A.
(2005): Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res 15, 1179–1188.CrossrefGoogle Scholar
Arbib, M. A.
(2012) How the Brain Got Language: The Mirror System Hypothesis. New York & Oxford: Oxford University Press.CrossrefGoogle Scholar
Arbib, M. A., & Bota, M.
(2003) Language Evolution: Neural Homologies and Neuroinformatics. Neural Networks, 16, 1237–1260.CrossrefGoogle Scholar
Arbib, M. A., & Fellous, J. M.
(2004) Emotions: from brain to robot. Trends Cogn Sci, 8(12), 554–561.CrossrefGoogle Scholar
Armstrong, E.
(1980) A quantitative comparison of the hominoid thalamus: II. Limbic Nuclei anterior Principalis and Lateralis nucleus. Am. J. Phys. Anthropol. 52 (3), 43–54.Google Scholar
(1990) The limbic system and culture: an allometric analysis of the neocortex and limbic nuclei. Hum. Nat. 2, 117–136.CrossrefGoogle Scholar
Barbas, H.
(2015) General Cortical and Special Prefrontal Connections: Principles from Structure to Function. (Edited by: Hyman, S. E.) Annual Review of Neuroscience 38, 269–289 CrossrefGoogle Scholar
Barger, N., Stefanacci, L., Semendeferi, K.
(2007) A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain. Am. J. Phys. Anthropol. 403 (134), 392–403.CrossrefGoogle Scholar
Barger, N., Stefanacci, L., Schumann, C. M., et al.
(2012) Neuronal populations in the basolateral nuclei of the amygdala are differentially increased in humans compared with apes: a stereological study. J. Comp. Neurol. 520 (13), 3035–3054.CrossrefGoogle Scholar
Barger, N., Hanson, K. L., Teffer, K., Schenker-Ahmed, N. M., Semendeferi, K.
(2014) Evidence for evolutionary specialization in human limbic structures. Front. Hum. Neurosci. 8, 1–17.CrossrefGoogle Scholar
Bauernfeind, A. L., de Sousa, A. A., Avasthi, T., et al.
(2013) A volumetric comparison of the insular cortex and its subregions in primates. J. Hum. Evol. 64 (4), 263–279 CrossrefGoogle Scholar
Bellugi, U., Järvinen-Pasley, A., Doyle, T., Reilly, J., & Korenberg, J.
(2007) Affect, social behavior and brain in Williams syndrome. Current Directions in Psychological Science, 5, 197–208.Google Scholar
Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., Korenberg, J. R.
(1999): Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci 22, 197–207.CrossrefGoogle Scholar
Belyk, Michel; Brown, Steven; Lim, Jessica; et al.
(2017) Convergence of semantics and emotional expression within the IFG pars orbitalis Neuroimage. 156, 240–248.CrossrefGoogle Scholar
Benga, O.
(2005) Intentional communication and the anterior cingulate cortex. Interaction Studies, 6, 201–221.CrossrefGoogle Scholar
Bianchi, S., Stimpson C. D., Bauernfield, A. L., Schapiro, S. J., Wallace, B. B., McArthur M. M., Bronson, E., Hopkins W. D., Semendeferi, K., Jacobs, B., Hof, P. R. and Sherwood C. C.
(2013) Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cerebral Cortex 23(10):2429–2436 Crossref[ p. 118 ]Google Scholar
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., Barrett, L. F.
(2011) Amygdala volume and social network size in humans. Nat. Neurosci. 14 (2), 163–164.CrossrefGoogle Scholar
Chailangkarn, T., Trujillo, C. A., Freitas, B. C., Hrvoj-Mihic, B., Herai, R. H., Yu, D. X., Timothy T. Brown, Maria C. Marchetto, Cedric Bardy, Lauren McHenry, Lisa Stefanacci, Anna Järvinen, Yvonne M. Searcy, Michelle DeWitt, Wenny Wong, Philip Lai, M. Colin Ard, Kari L. Hanson, Sarah Romero, Bob Jacobs, Anders M. Dale8, Li Dai, Julie R. Korenberg, Fred H. Gage, Ursula Bellugi, Eric Halgren, Katerina Semendeferi & Alysson R. Muotri
(2016) A human neurodevelopmental model for Williams syndrome. Nature 536, 338–343.Google Scholar
Chun, C. F., T. T. Brown, Hauke Bartsch, Joshua M. Kuperman, Donald J. Hagler Jr., Andrew Schork, Yvonne Searcy, Ursula Bellugi, Eric Halgren, Anders M. Dale
(2017) Williams syndrome-specific neuroanatomical profile and its associations with behavioral features NeuroImage: Clinical. 15, 343–347.Google Scholar
Coudé, G., & Ferrari, P. F.
(2018) Reflections on the organization of the cortical motor system and its role in the evolution of communication in primates Interaction Studies.CrossrefGoogle Scholar
Craig, A. D.
(2009) How do you feel now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70.CrossrefGoogle Scholar
Damasio, A. R.
(1994) Descartes’ Error Grosset/Putnam, New York.Google Scholar
Deaner, R. O., Isler, K., Burkart, J., & van Schaik, C.
(2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, Behavior and Evolution, 70(2), 115–24.CrossrefGoogle Scholar
DeFelipe, J., Alonso-Nanclares, L., Arellano, J. I.
(2002): Microstructure of the neocortex: comparative aspects. J Neurocytol 31, 299–316.CrossrefGoogle Scholar
Etkin, A., Egner, T., Kalisch, R.
(2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15 (2), 85–93.CrossrefGoogle Scholar
Evrard, H. C., Forro, T., Logothetis, N. K.
(2012) Von Economo neurons in the anterior insula of the macaque monkey. Neuron 74 (3), 482–489 CrossrefGoogle Scholar
Falk, D.
(2016) Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein J Anthropological Sciences. 94, 99–111.Google Scholar
Ferrari, P. F., Gerbella, M., Coudé, G., & Rozzi, S.
(2017) Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways. Neuroscience 358, 300–315.CrossrefGoogle Scholar
Hanson, K. L., Branka Hrvoj-Mihic and Katerina Semendeferi
(2014) A Dual Comparative Approach: Integrating Lines of Evidence from Human Evolutionary Neuroanatomy and Neurodevelopmental Disorders Brain Behav Evol 2014; 84, 135–155.Google Scholar
Hanson, K. L., Lew C. H., Hrvoj-Mihic, B., Groeniger K. M., Halgren, E., Bellugi, U. and K. Semendeferi
(2017) Increased glia density in the caudate nucleus in Williams syndrome: implications for frontostriatal dysfunction in autism. Developmental Neurobiology, published online.Google Scholar
Heimer, L. and Van Hoesen G. W.
(2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neuroscience & Biobehavioral Reviews 30(2):126–147.CrossrefGoogle Scholar
Hof, P. R., Nimchinsky, E. A., Perl, D. P., Erwin, J. M.
(2001) An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin. Neurosci. Lett. 307 (3), 139–142.Crossref[ p. 119 ]Google Scholar
Horton Lew, C., C. Brown, U. Bellugi, and K. Semendeferi
(2017) Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Research 10, 99–112.CrossrefGoogle Scholar
Hrvoj-Mihic, B.; Hanson, Kari L.; Lew, Caroline H.; et al.
(2017) Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond Frontiers in Neuroscience. 11, 419.Google Scholar
Hutsler, J. J., Zhang, H.
(2010): Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309, 83–94.CrossrefGoogle Scholar
Iacoboni, M., Dapretto, M.
(2006) The mirror neuron system and the consequences of its dysfunction. Nat. Rev. Neurosci. 7 (12), 942–951.CrossrefGoogle Scholar
Jarvinen, A., Korenberg, J., Bellugi, U.
(2013) The social phenotype of Williams syndrome. Current Opinion in Neurobiology 23, 1–9.CrossrefGoogle Scholar
Krubitzer, L., Kahn, D. M.
(2003) Nature versus nurture revisited: an old idea with a new twist. Progress in Neurobiology 70, 33–52.CrossrefGoogle Scholar
LeDoux, J.
(1996) The Emotional Brain, Simon & Schuster.Google Scholar
Lew, C. H., Semendeferi, K.
(2017) Evolutionary Specializations of the Human Limbic System. In: Kaas, J. (ed.), Evolution of Nervous Systems 2e. vol. 4, pp. 277–291. Oxford: Elsevier.CrossrefGoogle Scholar
Lew, C. H., Groeniger, K. M., Bellugi, U., Stefanacci, L., Schumann, C. M., K. Semendeferi
(2017) A postmortem stereological study of the amygdala in Williams syndrome. Brain Structure and Function, published online.CrossrefGoogle Scholar
Mesulam, M. M., Mufson, E. J.
(1982) Insula of the old world monkey III: efferent cortical output and comments on function. J. Comp. Neurol. 212 (1), 38–52 CrossrefGoogle Scholar
Morecraft, R. J., K. S. Stilwell-Morecraft, J. Ge, P. B. Cipolloni, D. N. Pandya
(2015) Cytoarchitecture and cortical connections of the anterior insula andadjacent frontal motor fields in the rhesus monkey Brain Research Bulletin. 119, 52–72 CrossrefGoogle Scholar
Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., Hof, P. R.
(1999) A neuronal morphologic type unique to humans and great apes. Proc. Natl. Acad. Sci. U.S.A. 96 (9), 5268–5273.CrossrefGoogle Scholar
Okon-Singer, H., Hendler, T., Pessoa, L., Shackman, A.
(2015) The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Frontiers in Human Neuroscience, 9, 58.CrossrefGoogle Scholar
Pessoa, L.
(2013) The Cognitive-Emotional Brain: From Interactions to Integration. Cambridge, MA: MIT Press.CrossrefGoogle Scholar
Petanjek, Z., Judas, M., Kostovic, I., Uylings, H. B. M.
(2008): Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18, 915–929.CrossrefGoogle Scholar
Petanjek, Z., Judas, M., Simic, G., Rasina, M. R., Uylings, H. B. M., Rakic, P., Kostovic, I.
(2011): Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108, 13281–13286.CrossrefGoogle Scholar
Schumann, C. M., Amaral, D. G.
(2006) Stereological analysis of amygdala neuron number in autism. J. Neurosci. 26 (29), 7674–7679.CrossrefGoogle Scholar
Seeley, W. W., Carlin, D. A., Allman, J. M., et al.
(2006) Early frontotemporal dementia targets neurons unique to apes and humans. Ann. Neurol. 60 (6), 660–667.Crossref[ p. 120 ]Google Scholar
Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., Van Hoesen, G. W.
(1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am. J. Phys. Anthropol. 106 (2), 129–155.CrossrefGoogle Scholar
(2001) Prefrontal cortex in humans and apes: A comparative study of Area 10. Am. J. Phys. Anthropol. 114, 224–241.CrossrefGoogle Scholar
Semendeferi, K., N. Barger
, N. Schenker Brain reorganization in humans and apes. In: Human Brain Evolving. D. Broadfield, M. Yuan, N. Toth, and K. Schick (Eds) Stone Age Institute Press (4th volume). David Brown Book Company and Oxbow Books, pp.119–155 (2010).Google Scholar
Stefanacci, L., Amaral, D. G.
(2000) Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J. Comp. Neurol. 421, 52–79.CrossrefGoogle Scholar
Striedter, G. F.
(2004) Principles of Brain Evolution Sinauer Associates.Google Scholar
Von Economo, C.
(1929) The Cytoarchitectonics of the Human Cerebral Cortex. Oxford University Press, Oxford, UK.Google Scholar
Wicker, B., Keysers, C., Plailly, J., Royet, J. P., Gallese, V., & Rizzolatti, G.
(2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron, 40(3), 655–664.CrossrefGoogle Scholar
Cited by

Cited by 4 other publications

Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2018. The comparative neuroprimatology 2018 (CNP-2018) road map for research on How the Brain Got Language . Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 19:1-2  pp. 370 ff. Crossref logo
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael C. Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby S. Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2020.  In How the Brain Got Language – Towards a New Road Map [Benjamins Current Topics, 112],  pp. 370 ff. Crossref logo
Hertrich, Ingo, Susanne Dietrich & Hermann Ackermann
2020. The Margins of the Language Network in the Brain. Frontiers in Communication 5 Crossref logo
Petanjek, Zdravko, Dora Sedmak, Domagoj Džaja, Ana Hladnik, Mladen Roko Rašin & Nataša Jovanov-Milosevic
2019. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Frontiers in Psychiatry 10 Crossref logo

This list is based on CrossRef data as of 11 april 2021. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.