Article published in:
Interaction Studies
Vol. 18:2 (2017) ► pp. 161173
Agresti, A.
(2010) Analysis of ordinal categorical data. Hoboken, NJ: Wiley. CrossrefGoogle Scholar
Bartneck, C., Obaid, M., & Zawieska, K.
(2013) Agents with faces – what can we learn from lego minfigures. In 1st international conference on human-agent interaction (pp. III–2–1). Retrieved from http://​hai​-conference​.net​/ihai2013​/proceedings​/pdf​/III​-2​-1​.pdf
Bartneck, C., & Reichenbach, J.
(2005) Subtle emotional expressions of synthetic characters. The international Journal of Human-Computer Studies, 62(2), 179–192. CrossrefGoogle Scholar
Bartneck, C., Reichenbach, J., & Breemen, A.
(2004) In your face, robot! the influence of a character’s embodiment on how users perceive its emotional ex-pressions. In Proceedings of the design and emotion 2004 conference . Retrieved from http://​www​.bartneck​.de​/publications​/2004​/inYourFaceRobot​/bartneckDE2004​.pdf
Biele, C., & Grabowska, A.
(2006) Sex differences in perception of emotion intensity in dymanic and static facial expressions. Exp Brain Res, 1711, 1–6. CrossrefGoogle Scholar
Breazeal, C.
(2003) Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59(1–2), 119–155. Retrieved from http://​www​.sciencedirect​.com​/science​/article​/pii​/S1071581903000181 (Applications of Affective Computing in Human-Computer Interaction) CrossrefGoogle Scholar
Calder, A. J., Keane, J., Manly, T., Sprengelmeyer, R., Scott, S., Nimmo-Smith, I., & Young, A.
(2003) Facial expression recognition across the adult life span. Neuropsychologia, 411, 195–202. CrossrefGoogle Scholar
Calvo, M. G., & Nummenmaa, L.
(2016) Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 30(6), 1081–1106. CrossrefGoogle Scholar
Christensen, R. H. B.
(2015) ordinal—regression models for ordinal data. (R package version 2015.6–28. http://​www​.cran​.r​-project​.org​/package​=ordinal/)Google Scholar
Fong, T., Nourbakhsh, I., & Dautenhahn, K.
(2003) A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3–4), 143–166. Retrieved from http://​www​.sciencedirect​.com​/science​/article​/pii​/S092188900200372X (Socially Interactive Robots) CrossrefGoogle Scholar
Hess, U., Blairy, S., & Kleck, R. E.
(1997) The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21(4), 241–257. CrossrefGoogle Scholar
Hwang, J., Park, T., & Hwang, W.
(2013) The effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot. Applied Ergonomics, 44(3), 459–471. Retrieved from http://​www​.sciencedirect​.com​/science​/article​/pii​/S0003687012001688. DOI: CrossrefGoogle Scholar
Kamachi, M., Bruce, V., Mukaida, S., Gyoba, J., Yoshikawa, S., & Akamatsu, S.
(2013) Dynamic properties influence the perception of facial expressions. Perception, 42 (11), 1266–1278. Retrieved from http://​pec​.sagepub​.com​/content​/42​/11​/1266​.abstract. DOI: CrossrefGoogle Scholar
Martina Mittlböck, M., & Shemper, M.
(1996) Explained variation for logistic regression. Statistics in Medicine, 1987–1997. CrossrefGoogle Scholar
Matsumoto, D., & Ekman, P.
(1989) American-japanese cultural differences in intensity ratings of facial expressions of emotion. Motivation and Emotion, 131, 143–157. CrossrefGoogle Scholar
McClure, E. B.
(2000) A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126(3), 424–253. CrossrefGoogle Scholar
McColl, D., & Nejat, G.
(2014) Recognizing emotional body language displayed by a human-like social robot. International Journal of Social Robotics, 6(2), 261–280. CrossrefGoogle Scholar
Menard, S.
(2000) Coefficients of determination for multiple logistic regression analysis. The American Statistician, 17–24.Google Scholar
R. Core Team
(2014) R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://​www​.R​-project​.org/
Rapcsak, S., Galper, S., Comer, J., Reminger, S., Nielsen, L., & Kaszniak, A.
(2000) Fear recognition deficits after focal brain damage—a cautionary note. Neurology, 541, 575–581. CrossrefGoogle Scholar
Russel, J. A.
(1994) Is there universal recognition of emotion from facial expression? a review of the cross-cultural studies. Psychological Bulletin, 1151, 102–141. CrossrefGoogle Scholar
Sonnemans, J., & Frijda, N.
(1994) The structure of subjective emotional intensity. Cognition and Emotion, 81, 329–350. CrossrefGoogle Scholar
Sonnemans, J., & Frijda, N. H.
(1995) The determinants of subjective emotional intensity. Cognition and Emotion, 91, 483–506. CrossrefGoogle Scholar
Suzuki, A., Hoshino, T., & Shigemasu, K.
(2006) Measuring individual differences in sensitivities to basic emotions in faces. Cognition 991, 327–353. CrossrefGoogle Scholar
Wilhelm, O., Hildebrandt, A., Manske, K., Schacht, A., & Sommer, W.
(2014) Test battery for measuring the perception and recognition of facial expressions of emotion. Frontiers in Psychology, 51, 404. Retrieved from http://​journal​.frontiersin​.org​/article​/10​.3389​/fpsyg​.2014​.00404. DOI: CrossrefGoogle Scholar
Cited by

Cited by 1 other publications

Rossi, Silvia & Martina Ruocco
2019. Better alone than in bad company. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 20:3  pp. 487 ff. Crossref logo

This list is based on CrossRef data as of 15 april 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.