Article published In:
Human Robot Collaborative Intelligence: Theory and applications
Edited by Chenguang Yang, Xiaofeng Liu, Junpei Zhong and Angelo Cangelosi
[Interaction Studies 20:1] 2019
► pp. 148184
References
Angel-Fernandez, J. and A. Bonarini
(2016) Robots showing emotions. Interaction Studies, 17(3):408–437. DOI logoGoogle Scholar
Arnal, L., J. E. Solanes, J. Molina, and J. Tornero
(2017) Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 451:306–321. DOI logoGoogle Scholar
Bassi, E., F. Benzi, L. M. Capisani, D. Cuppone, and A. Ferrara
(2009) Hybrid position/force sliding mode control of a class of robotic manipulators. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages 2966–2971.Google Scholar
Chiaverini, S., G. Oriolo, and I. Walker
(2008) Kinematically redundant manipulators. Springer Handbook of Robotics, pages 245–268. DOI logoGoogle Scholar
Dimeas, F. and N. Aspragathos
(2016) Online stability in human-robot cooperation with admittance control. IEEE Transactions on Haptics, 9(2):267–278. DOI logoGoogle Scholar
Edwards, C. and S. Spurgeon
(1998) Sliding Mode Control: Theory and Applications. Taylor & Francis, UK, 1st edition. DOI logoGoogle Scholar
Elbehiery, H., A. Hefnawy, and M. Elewa
(2007) Surface defects detection for ceramic tiles using image processing and morphological techniques. International Journal of Computer and Information Engineering, 1(5):1488–1492.Google Scholar
Engeberg, E., S. Meek, and M. Minor
(2008) Hybrid force-velocity sliding mode control of a prosthetic hand. IEEE Transactions on Biomedical Engineering, 55(5):1572–1581. DOI logoGoogle Scholar
Etzioni, A. and O. Etzioni
(2017) The ethics of robotic caregivers. Interaction Studies, 18(2):174–190. DOI logoGoogle Scholar
Golub, G. and C. Van Loan
(1996) Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 3rd edition.Google Scholar
Graaf, M. de, S. Allouch, and J. van Dijk
(2016) Long-term evaluation of a social robot in real homes. Interaction Studies, 17(3):461–490. DOI logoGoogle Scholar
Huang, S.-J., Y.-C. Liu, and S.-H. Hsiang
(2013) Robotic end-effector impedance control without expensive torque/force sensor. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(7):1446–1453.Google Scholar
Jlassi, S., S. Tliba, and Y. Chitour
(2014) An event-controlled online trajectory generator based on the human-robot interaction force processing. Industrial Robot: An International Journal, 41(1):15–25. DOI logoGoogle Scholar
Kashiri, N., N. G. Tsagarakis, M. Van Damme, B. Vanderborght, and D. G. Caldwell
(2016) Proxy-Based Sliding Mode Control of Compliant Joint Manipulators, pages 241–257. Springer International Publishing, Cham.Google Scholar
Khan, A. M., D.-W. Yun, K. M. Zuhaib, J. Iqbal, R.-J. Yan, F. Khan, and C. Han
(2017) Estimation of desired motion intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2):802–814. DOI logoGoogle Scholar
Levant, A.
(2003) Higher-order sliding modes, differentiation and output-feedback control. Int. Journal of Control, 76(9–10):924–941. DOI logoGoogle Scholar
Levent, A.
(2005) Quasi-continuous high-order sliding-mode controllers. IEEE Transactions on Automatic Control, 50(11):1812–1816. DOI logoGoogle Scholar
Li, Y. and S. S. Ge
(2016) Force tracking control for motion synchronization in humanrobot collaboration. Robotica, 34(6):1260–1281. DOI logoGoogle Scholar
Martínez, S. S., J. G. Ortega, J. G. García, A. S. García, and E. E. Estévez
(2013) An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology, 68(5):1123–1136. DOI logoGoogle Scholar
Massoud, A. T., H. A. El Maraghy, and T. Lahdhiri
(1999) On the robust nonlinear motion position and force control of flexible joints robot manipulators. Journal of Intelligent and Robotic Systems, 25(3):227–254. DOI logoGoogle Scholar
Mitra, A. and L. Behera
(2015) Development of a fuzzy sliding mode controller with adaptive tuning technique for a mri guided robot in the human vasculature. In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pages 370–377. DOI logoGoogle Scholar
Molina, J., J. E. Solanes, L. Arnal, and J. Tornero
(2017) On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing, 481:263–278. DOI logoGoogle Scholar
Nakamura, Y., H. Hanafusa, and T. Yoshikawa
(1987) Task-priority based redundancy control of robot manipulators. The Int. Journal of Robotics Research, 6(2):3–15. DOI logoGoogle Scholar
Orta, G., A. S. Bilgi, K. Tasdemir, and H. Kalkan
(2016) A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 1301:38–47. DOI logoGoogle Scholar
Papadopoulos, F., D. Kuster, L. Corrigan, A. Kappas, and G. Castellano
Rahman, N. and M. C. Lee
(2013) Reaction force separation method of surgical tool from unknown dynamics and disturbances by fuzzy logic and perturbation observer of smcspo algorithm. In The SICE Annual Conference 2013, pages 2536–2541.Google Scholar
Roswell, A., F. J. Xi, and G. Liu
(2006) Modelling and analysis of contact stress for automated polishing. International Journal of Machine Tools and Manufacture, 46(3):424–435. DOI logoGoogle Scholar
Sakaino, S. and K. Ohnishi
(2006) Sliding mode control based on position control for contact motion applied to hopping robot. In 2006 IEEE International Conference on Industrial Technology, pages 170–175. DOI logoGoogle Scholar
Shi, Y., D. Zheng, L. Hu, Y. Wang, and L. Wang
(2012) Nc polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo. The International Journal of Advanced Manufacturing Technology, 58(9):1061–1073. DOI logoGoogle Scholar
Siciliano, B. and J. Slotine
(1991) A general framework for managing multiple tasks in highly redundant robotic systems. In Proceedings of the Fifth Int. Conference on Advanced Robotics (ICAR’91), pages 1211–1216, Pisa, Italy.Google Scholar
Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo
(2009) Robotics: Modelling, Planning and Control. Springer-Verlag, London, UK. DOI logoGoogle Scholar
Tian, F., Z. Li, C. Lv, and G. Liu
(2016) Polishing pressure investigations of robot automatic polishing on curved surfaces. The International Journal of Advanced Manufacturing Technology, 87(1):639–646. DOI logoGoogle Scholar
Tornero, J., L. Armesto, M. C. Mora, N. Montés, A. Herráez, and J. Asensio
(2012) Detección de defectos en carrocerías de vehículos basado en visión artificial: Diseño e implantación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(1):93–104. DOI logoGoogle Scholar
Utkin, V., J. Guldner, and J. Shi
(2009) Sliding Mode Control in Electro-Mechanical Systems. Taylor & Francis, London, 2nd edition. DOI logoGoogle Scholar
Vlachos, E., E. Jochum, and L.-P. Demers
Vogel, J., S. Haddadin, B. Jarosiewicz, J. Simeral, D. Bacher, L. Hochberg, J. Donoghue, and P. van der Smagt
(2015) An assistive decision-and-control architecture for force-sensitive hand-arm systems driven by human-machine interfaces. The International Journal of Robotics Research, 34(6):763–780. DOI logoGoogle Scholar
Wu, Q., X. Wang, F. Du, and Q. Zhu
(2015) Fuzzy sliding mode control of an upper limb exoskeleton for robot-assisted rehabilitation. In 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pages 451–456. DOI logoGoogle Scholar
Yun, D., A. M. Khan, R.-J. Yan, Y. Ji, H. Jang, J. Iqbal, K. M. Zuhaib, J. Y. Ahn, J. Han, and C. Han
(2016) Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing, 17(3):355–362. DOI logoGoogle Scholar
Zhou, J., Z. Zhou, and Q. Ai
(2016) Impedance control of the rehabilitation robot based on sliding mode control. In X. Li, editor, Mechanical Engineering and Control Systems (MECS2015), pages 135–140. DOI logoGoogle Scholar
Cited by

Cited by 4 other publications

García, Alberto, Luis Gracia, J. Ernesto Solanes, Vicent Girbés-Juan, Carlos Perez-Vidal & Josep Tornero
2021. Robotic assistance for industrial sanding with a smooth approach to the surface and boundary constraints. Computers & Industrial Engineering 158  pp. 107366 ff. DOI logo
González, Claudia, J. Ernesto Solanes, Adolfo Muñoz, Luis Gracia, Vicent Girbés-Juan & Josep Tornero
2021. Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback. Journal of Manufacturing Systems 59  pp. 283 ff. DOI logo
Liu, Chengguo, Ye He, Xiaoan Chen & Xiaojiang Zhang
2021. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),  pp. 2573 ff. DOI logo
Liu, Chengguo, Ye He, Kuan Li & Xue Zhao
2021. Enhanced Admittance Control for Time-Varying Force Tracking of Robots in Unknown Environment. In Intelligent Robotics and Applications [Lecture Notes in Computer Science, 13014],  pp. 552 ff. DOI logo

This list is based on CrossRef data as of 15 april 2022. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.