This paper presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks
such as polishing, grinding, finishing, deburring, etc. The proposed scheme is based on task priority and non-conventional sliding
mode control. Furthermore, the proposal includes two force sensors attached to the manipulator end-effector and tool: one sensor
is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool.
The applicability and feasibility of the proposed collaborative solution for robotic surface treatment are substantiated by
experimental results using a redundant 7R manipulator: the Sawyer collaborative robot.
Angel-Fernandez, J. and A. Bonarini. (2016). Robots showing emotions. Interaction Studies, 17(3):408–437.
Arnal, L., J. E. Solanes, J. Molina, and J. Tornero. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 451:306–321.
Bassi, E., F. Benzi, L. M. Capisani, D. Cuppone, and A. Ferrara. (2009). Hybrid position/force sliding mode control of a class of robotic manipulators. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages 2966–2971.
Chiaverini, S., G. Oriolo, and I. Walker. (2008). Kinematically redundant manipulators. Springer Handbook of Robotics, pages 245–268.
Dimeas, F. and N. Aspragathos. (2016). Online stability in human-robot cooperation with admittance control. IEEE Transactions on Haptics, 9(2):267–278.
Edwards, C. and S. Spurgeon. (1998). Sliding Mode Control: Theory and Applications. Taylor & Francis, UK, 1st edition.
Elbehiery, H., A. Hefnawy, and M. Elewa. (2007). Surface defects detection for ceramic tiles using image processing and morphological techniques. International Journal of Computer and Information Engineering, 1(5):1488–1492.
Engeberg, E., S. Meek, and M. Minor. (2008). Hybrid force-velocity sliding mode control of a prosthetic hand. IEEE Transactions on Biomedical Engineering, 55(5):1572–1581.
Huang, S.-J., Y.-C. Liu, and S.-H. Hsiang. (2013). Robotic end-effector impedance control without expensive torque/force sensor. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(7):1446–1453.
Jlassi, S., S. Tliba, and Y. Chitour. (2014). An event-controlled online trajectory generator based on the human-robot interaction force processing. Industrial Robot: An International Journal, 41(1):15–25.
Kashiri, N., N. G. Tsagarakis, M. Van Damme, B. Vanderborght, and D. G. Caldwell. (2016). Proxy-Based Sliding Mode Control of Compliant Joint Manipulators, pages 241–257. Springer International Publishing, Cham.
Khan, A. M., D.-W. Yun, K. M. Zuhaib, J. Iqbal, R.-J. Yan, F. Khan, and C. Han. (2017). Estimation of desired motion intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2):802–814.
Levant, A.. (2003). Higher-order sliding modes, differentiation and output-feedback control. Int. Journal of Control, 76(9–10):924–941.
Li, Y. and S. S. Ge. (2016). Force tracking control for motion synchronization in humanrobot collaboration. Robotica, 34(6):1260–1281.
Martínez, S. S., J. G. Ortega, J. G. García, A. S. García, and E. E. Estévez. (2013). An industrial vision system for surface quality inspection of transparent parts. The International Journal of Advanced Manufacturing Technology, 68(5):1123–1136.
Massoud, A. T., H. A. El Maraghy, and T. Lahdhiri. (1999). On the robust nonlinear motion position and force control of flexible joints robot manipulators. Journal of Intelligent and Robotic Systems, 25(3):227–254.
Mitra, A. and L. Behera. (2015). Development of a fuzzy sliding mode controller with adaptive tuning technique for a mri guided robot in the human vasculature. In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pages 370–377.
Molina, J., J. E. Solanes, L. Arnal, and J. Tornero. (2017). On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing, 481:263–278.
Nakamura, Y., H. Hanafusa, and T. Yoshikawa. (1987). Task-priority based redundancy control of robot manipulators. The Int. Journal of Robotics Research, 6(2):3–15.
Orta, G., A. S. Bilgi, K. Tasdemir, and H. Kalkan. (2016). A hyperspectral imaging based control system for quality assessment of dried figs. Computers and Electronics in Agriculture, 1301:38–47.
Rahman, N. and M. C. Lee. (2013). Reaction force separation method of surgical tool from unknown dynamics and disturbances by fuzzy logic and perturbation observer of smcspo algorithm. In The SICE Annual Conference 2013, pages 2536–2541.
Roswell, A., F. J. Xi, and G. Liu. (2006). Modelling and analysis of contact stress for automated polishing. International Journal of Machine Tools and Manufacture, 46(3):424–435.
Sakaino, S. and K. Ohnishi. (2006). Sliding mode control based on position control for contact motion applied to hopping robot. In 2006 IEEE International Conference on Industrial Technology, pages 170–175.
Shi, Y., D. Zheng, L. Hu, Y. Wang, and L. Wang. (2012). Nc polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo. The International Journal of Advanced Manufacturing Technology, 58(9):1061–1073.
Siciliano, B. and J. Slotine. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Proceedings of the Fifth Int. Conference on Advanced Robotics (ICAR’91), pages 1211–1216, Pisa, Italy.
Siciliano, B., L. Sciavicco, L. Villani, and G. Oriolo. (2009). Robotics: Modelling, Planning and Control. Springer-Verlag, London, UK.
Tian, F., Z. Li, C. Lv, and G. Liu. (2016). Polishing pressure investigations of robot automatic polishing on curved surfaces. The International Journal of Advanced Manufacturing Technology, 87(1):639–646.
Tornero, J., L. Armesto, M. C. Mora, N. Montés, A. Herráez, and J. Asensio. (2012). Detección de defectos en carrocerías de vehículos basado en visión artificial: Diseño e implantación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(1):93–104.
Utkin, V., J. Guldner, and J. Shi. (2009). Sliding Mode Control in Electro-Mechanical Systems. Taylor & Francis, London, 2nd edition.
Vogel, J., S. Haddadin, B. Jarosiewicz, J. Simeral, D. Bacher, L. Hochberg, J. Donoghue, and P. van der Smagt. (2015). An assistive decision-and-control architecture for force-sensitive hand-arm systems driven by human-machine interfaces. The International Journal of Robotics Research, 34(6):763–780.
Wu, Q., X. Wang, F. Du, and Q. Zhu. (2015). Fuzzy sliding mode control of an upper limb exoskeleton for robot-assisted rehabilitation. In 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pages 451–456.
Yun, D., A. M. Khan, R.-J. Yan, Y. Ji, H. Jang, J. Iqbal, K. M. Zuhaib, J. Y. Ahn, J. Han, and C. Han. (2016). Handling subject arm uncertainties for upper limb rehabilitation robot using robust sliding mode control. International Journal of Precision Engineering and Manufacturing, 17(3):355–362.
Zhou, J., Z. Zhou, and Q. Ai. (2016). Impedance control of the rehabilitation robot based on sliding mode control. In X. Li, editor, Mechanical Engineering and Control Systems (MECS2015), pages 135–140.
2024. Advancing human–robot collaboration in handcrafted manufacturing: cobot-assisted polishing design boosted by virtual reality and human-in-the-loop. The International Journal of Advanced Manufacturing Technology 132:9-10 ► pp. 4489 ff.
2023. Robotic direct grinding for unknown workpiece contour based on adaptive constant force control and human–robot collaboration. Industrial Robot: the international journal of robotics research and application 50:3 ► pp. 376 ff.
Spacek, Lubos, Jiri Vojtesek & Frantisek Gazdos
2022. Control of Unstable Systems Using a 7 DoF Robotic Manipulator. Machines 10:12 ► pp. 1164 ff.
García, Alberto, Luis Gracia, J. Ernesto Solanes, Vicent Girbés-Juan, Carlos Perez-Vidal & Josep Tornero
2021. Robotic assistance for industrial sanding with a smooth approach to the surface and boundary constraints. Computers & Industrial Engineering 158 ► pp. 107366 ff.
González, Claudia, J. Ernesto Solanes, Adolfo Muñoz, Luis Gracia, Vicent Girbés-Juan & Josep Tornero
2021. Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback. Journal of Manufacturing Systems 59 ► pp. 283 ff.
Liu, Chengguo, Ye He, Xiaoan Chen & Xiaojiang Zhang
2021. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), ► pp. 2573 ff.
Liu, Chengguo, Ye He, Kuan Li & Xue Zhao
2021. Enhanced Admittance Control for Time-Varying Force Tracking of Robots in Unknown Environment. In Intelligent Robotics and Applications [Lecture Notes in Computer Science, 13014], ► pp. 552 ff.
This list is based on CrossRef data as of 18 october 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.