Interaction history as a source of compositionality in emergent communication
In this paper, we explore interaction history as a particular source of pressure for achieving emergent
compositional communication in multi-agent systems. We propose a training regime implementing template transfer, the idea of
carrying over learned biases across contexts. In the presented method, a sender-receiver dyad is first trained with a disentangled
pair of objectives, and then the receiver is transferred to train a new sender with a standard objective. Unlike other methods
(e.g. the obverter algorithm), the template transfer approach does not require imposing inductive biases on the architecture of
the agents. We experimentally show the emergence of compositional communication using topographical similarity, zero-shot
generalization and context-independence as evaluation metrics. The presented approach is connected to an important line of work in
semiotics and developmental psycholinguistics: it supports a conjecture that compositional communication is scaffolded on simpler
communication protocols.
Article outline
- 1.Introduction
- 2.Related work
- Inductive biases for compositional communication
- Obverter approach
- Population-based training
- Multi-task training
- Evolutionary origins of grammar
- Generalized signaling games
- Motivation for our approach
- 3.Method
- 3.1Experimental setup
- 3.1.1Dataset
- 3.1.2Object naming game
- 3.2Architecture of the agents
- General setup
- Vision module
- Sender
- Receiver
- Hyperparameters
- 3.3Template transfer approach
- 4.Experiments and results
- 4.1Measuring compositionality
- Test set accuracy
- Context-independence
- Topographical similarity
- 4.2Baselines
- Random baseline
- Same architecture
- Obverter baseline
- 4.3Results
- 4.4Visualizing the activations of the receiver
- 5.Discussion
- Sources of compositionality
- Evolutionary game-theoretic interpretation
- Semiotic interpretation
- Cognitive interpretation
- Developmental interpretation
- 6.Conclusions
- Acknowledgements
- Notes
-
References
References (58)
References
Barrett, J., Skyrms, B., and Cochran, C. (2018). Hierarchical
Models for the Evolution of Compositional Language. Institute for Mathematical Behavioral
Sciences Technical Report MBS 18-03.
Barrett, J. A. and Skyrms, B. (2017). Self-assembling
Games. The British Journal for the Philosophy of
Science, 68(2):329–353.
Barrett, J. A., Skyrms, B., and Mohseni, A. (2019). Self-Assembling
Networks. The British Journal for the Philosophy of
Science, 70(1):301–325.
Batali, J. (1998). Computational
simulations of the emergence of grammar. Approach to the Evolution of
Language, pages 405–426.
Bogin, B., Geva, M., and Berant, J. (2018). Emergence
of Communication in an Interactive World with Consistent Speakers. arXiv:1809.00549
[cs]. arXiv: 1809.00549.
Bouchacourt, D. and Baroni, M. (2018). How
agents see things: On visual representations in an emergent language game. arXiv:1808.10696
[cs]. arXiv: 1808.10696.
Brighton, H. (2002). Compositional
Syntax From Cultural Transmission. Artificial
Life, 8(1):25–54.
Brighton, H. and Kirby, S. (2006). Understanding
Linguistic Evolution by Visualizing the Emergence of Topographic Mappings. Artificial
Life, 12(2):229–242.
Brown, P. F., Della-Pietra, S. A., Della-Pietra, V. J., and Mercer, R. L. (1993). The
mathematics of statistical machine translation. Computational
Linguistics, 19(2):263–313.
Bruner, J. S. (1981). Intention
in the structure of action and interaction. Advances in Infancy
Research, 11:41–56.
Bruner, J. S. (1983). Child’s
talk: learning to use language. W.W. Norton, New York, 1st ed edition.
Cangelosi, A. (2001). Evolution
of communication and language using signals, symbols, and words. IEEE Transactions on
Evolutionary
Computation, 5(2):93–101.
Chaabouni, R., Kharitonov, E., Bouchacourt, D., Dupoux, E., and Baroni, M. (2020). Compositionality
and Generalization In Emergent Languages. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4427–4442, Online.
Association for Computational Linguistics.
Choi, E., Lazaridou, A., and de Freitas, N. (2018). Compositional
Obverter Communication Learning From Raw Visual Input. ICLR
2018. arXiv: 1804.02341.
Cogswell, M., Lu, J., Lee, S., Parikh, D., and Batra, D. (2019). Emergence
of Compositional Language with Deep Generational
Transmission. ArXiv, abs/1904.09067.
Cowley, S. J., editor (2011). Distributed
language. Number v. 34 in Benjamins current topics. John Benjamins Pub. Co, Amsterdam; Philadelphia. OCLC:
ocn741355729.
Das, A., Kottur, S., Moura, J. M. F., Lee, S., and Batra, D. (2017). Learning
Cooperative Visual Dialog Agents with Deep Reinforcement Learning. 2017 IEEE International
Conference on Computer Vision (ICCV), Venice,
2017
1. arXiv:
1703.06585.
De Beule, J. and Bergen, B. K. (2006). On
the emergence of compositionality. In The Evolution of
Language, pages 35–42, Rome, Italy. World scientific.
Deacon, T. W. (1998). The
symbolic species: the co-evolution of language and the brain. Norton, New York, NY, norton paperback edition. OCLC:
254499872.
Elman, J. L. (1990). Finding
Structure in Time. Cognitive
Science, 14(2):179–211.
Foerster, J. N., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning
to Communicate with Deep Multi-Agent Reinforcement Learning. NIPS’16 Proceedings of the 30th
International Conference on Neural Information Processing Systems. arXiv:
1605.06676.
Gong, T., Shuai, L., and Zhang, M. (2014). Modelling
language evolution: Examples and predictions. Physics of Life
Reviews, 11(2):280–302.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. Adaptive computation and machine learning. The MIT Press, Cambridge, Massachusetts.
Grouchy, P., D’Eleuterio, G. M. T., Christiansen, M. H., and Lipson, H. (2016). On
The Evolutionary Origin of Symbolic Communication. Scientific
Reports, 6:34615.
Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P. A., Strouse, D. J., Leibo, J. Z., and de Freitas, N. (2018). Social
Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning. arXiv:1810.08647
[cs, stat]. arXiv: 1810.08647.
Kharitonov, E. and Baroni, M. (2020). Emergent
Language Generalization and Acquisition Speed are not tied to
Compositionality. arXiv:2004.03420 [cs]. arXiv:
2004.03420.
Kharitonov, E., Chaabouni, R., Bouchacourt, D., and Baroni, M. (2019). EGG:
a toolkit for research on Emergence of lanGuage in Games. arXiv:1907.00852
[cs]. arXiv: 1907.00852.
Kingma, D. P. and Ba, J. (2014). Adam:
A Method for Stochastic Optimization. arXiv:1412.6980 [cs]. arXiv:
1412.6980.
Kirby, S. (2001). Spontaneous
evolution of linguistic structure-an iterated learning model of the emergence of regularity and
irregularity. IEEE Transactions on Evolutionary
Computation, 5(2):102–110.
Kirby, S., Cornish, H., and Smith, K. (2008). Cumulative
cultural evolution in the laboratory: An experimental approach to the origins of structure in human
language. Proceedings of the National Academy of
Sciences, 105(31):10681–10686.
Korbak, T., Zubek, J., and Raczaszek-Leonardi, J. (2020). Measuring
non-trivial compositionality in emergent communication. arXiv preprint
arXiv:2010.15058.
Kottur, S., Moura, J. M. F., Lee, S., and Batra, D. (2017). Natural
Language Does Not Emerge ‘Naturally’ in Multi-Agent Dialog. arXiv:1706.08502
[cs]. arXiv: 1706.08502.
Kriegeskorte, N. (2008). Representational
similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems
Neuroscience.
Kuciński, L., Korbak, T., Kolodziej, P., and Miloś, P. (2021). Catalytic
role of noise and necessity of inductive biases in the emergence of compositional
communication. In Advances in Neural Information Processing
Systems.
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2016). Building
Machines That Learn and Think Like People. arXiv:1604.00289 [cs,
stat]. arXiv: 1604.00289.
Lazaridou, A., Hermann, K. M., Tuyls, K., and Clark, S. (2018). Emergence
of Linguistic Communication from Referential Games with Symbolic and Pixel
Input. arXiv:1804.03984 [cs]. arXiv:
1804.03984.
Lazaridou, A., Peysakhovich, A., and Baroni, M. (2016). Multi-Agent
Cooperation and the Emergence of (Natural) Language. arXiv:1612.07182
[cs]. arXiv: 1612.07182.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. In PROCEEDINGS OF THE
IEEE, pages 2278–2324.
Levenshtein, V. I. (1966). Binary
Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics
Doklady, 101:707.
Lewis, D. K. (1969). Convention:
a philosophical
study. Blackwell, Oxford, nachdr.
edition. OCLC: 837747718.
Li, F. and Bowling, M. (2019). Ease-of-Teaching
and Language Structure from Emergent Communication. arXiv:1906.02403
[cs]. arXiv: 1906.02403.
Lowe, R., Foerster, J., Boureau, Y.-L., Pineau, J., and Dauphin, Y. (2019). On
the Pitfalls of Measuring Emergent Communication. arXiv:1903.05168 [cs,
stat]. arXiv: 1903.05168.
Nomikou, I., Koke, M., and Rohlfing, K. J. (2017). Verbs
in Mothers’ Input to Six-Month-Olds: Synchrony between Presentation, Meaning, and Actions Is Related to Later Verb
Acquisition. Brain
Sciences, 7(12):52.
Nowak, M. A. and Krakauer, D. C. (1999). The
evolution of language. Proceedings of the National Academy of
Sciences, 96(14):8028–8033. Publisher: National Academy of Sciences Section: Biological Sciences.
Oliphant, M. and Batali, J. (1997). Learning
and the Emergence of Coordinated Communication. Center for Research on Language
Newsletter, 111.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic
differentiation in PyTorch.
Peirce, C. S. (1998). Collected
papers of Charles Sanders Peirce. Thoemmes Press, Bristol, England. OCLC:
ocm39692049.
Raczaszek-Leonardi, J. (2012). Language
as a System of Replicable Constraints. In LAWS, LANGUAGE and
LIFE, volume 71, pages 295–333. Springer Netherlands, Dordrecht.
Raczaszek-Leonardi, J., Nomikou, I., Rohlfing, K. J., and Deacon, T. W. (2018). Language
Development From an Ecological Perspective: Ecologically Valid Ways to Abstract
Symbols. Ecological
Psychology, 30(1):39–73.
Rainey, H. J., Zuberbühler, K., and Slater, P. J. B. (2004). Hornbills
can distinguish between primate alarm calls. Proceedings of the Royal Society of London. Series
B: Biological
Sciences, 271(1540):755–759.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating
errors. Nature, 323(6088):533–536.
Ryan, M. and Rand, S. (1993). Sexual
selection and signal evolution: the ghost of biases past. Philosophical Transactions of the
Royal Society of London. Series B: Biological
Sciences, 340(1292):187–195.
Skyrms, B. (2010). Signals:
evolution, learning, & information. Oxford University Press, Oxford; New York. OCLC:
ocn477256653.
Steinert-Threlkeld, S. (2020). Towards
the Emergence of Non-trivial Compositionaliy. Philosophy of Science.
Stern, D. N. (1974). The
Goal and Structure of Mother-Infant Play. Journal of the American Academy of Child
Psychiatry, 13(3):402–421.
Tomasello, M., Carpenter, M., Call, J., Behne, T., and Moll, H. (2005). Understanding
and sharing intentions: The origins of cultural cognition. Behavioral and Brain
Sciences, 28(5):675–691.
Wittgenstein, L. (1953). Philosophical
Investigations. Basil Blackwell, Oxford.
Yamashita, Y. and Tani, J. (2008). Emergence
of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot
Experiment. PLoS Computational
Biology, 4(11):e1000220.
Cited by (3)
Cited by three other publications
Jones, Peter E. & Catherine Read
2023.
Mythbusters united? A dialogue over Harris's integrationist linguistics and Gibson's Ecological Psychology.
Language Sciences 97
► pp. 101536 ff.
Rączaszek-Leonardi, Joanna, Krzysztof Główka, Iris Nomikou & Nicole Rossmanith
2022.
Time-to-smile, time-to-speak, time-to-resolve: timescales for shaping engagement in language.
Language Sciences 93
► pp. 101495 ff.
This list is based on CrossRef data as of 6 august 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.