References

Literature cited

Adret, P.
(1993a) Operant conditioning, song learning and imprinting to taped song in the zebra finch. Animal Behaviour, 46 1, 149–159. DOI logoGoogle Scholar
(1993b) Vocal learning induced with operant techniques: an overview. Netherlands Journal of Zoology, 43 1, 125–125. DOI logoGoogle Scholar
(1997) Discrimination of video images by zebra finches (Taeniopygia guttata): direct evidence from song performance. Journal of Comparative Psychology, 111 1, 115–125. DOI logoGoogle Scholar
Akçay, Ç. L., Tom, M. E., Campbell, S. E., & Beecher, M. D.
(2013) Song type matching is an honest early threat signal in a hierarchical animal communication system. Proceedings of the Royal Society B: Biological Sciences, 280 1, 20122517. DOI logoGoogle Scholar
Anisimov, V. N., Herbst, J. A., Abramchuk, A. N., Latanov, A. V., Hahnloser, R. H., & Vyssotski, A. L.
(2014) Reconstruction of vocal interactions in a group of small songbirds. Nature Methods, 11 1, 1135–1137. DOI logoGoogle Scholar
Araguas, A., Guellaï, B., Gauthier, P., Richer, F., Montone, G., Chopin, A., & Derégnaucourt, S.
(2022) Design of a robotic zebra finch for experimental studies on developmental song learning. Journal of Experimental Biology, 225 1, jeb242949. DOI logoGoogle Scholar
Arnold, F., Staniszewski, M. S., Pelzl, L., Ramenda, C., Gahr, M., & Hoffmann, S.
(2022) Vision and vocal communication guide three-dimensional spatial coordination of zebra finches during wind-tunnel flights. Nature Ecology & Evolution, 6 1, 1221–1230. DOI logoGoogle Scholar
Balsby, T. J., & Bradbury, J. W.
(2009) Vocal matching by orange-fronted conures (Aratinga canicularis). Behavioural Processes, 82 1, 133–139. DOI logoGoogle Scholar
Baptista, L. F., & Petrinovich, L.
(1984) Social interaction, sensitive phases and the song template hypothesis in the white-crowned sparrow. Animal Behaviour, 321, 172–181. DOI logoGoogle Scholar
Baptista, L. F., & Petrinovich, L.
(1986) Song development in the white-crowned sparrow: social factors and sex differences. Animal Behaviour, 34 1, 1359–1371. DOI logoGoogle Scholar
Beecher, M. D., Campbell, S. E., Burt, J. M., Hill, C. E., & Nordby, J. C.
(2000) Song-type matching between neighbouring song sparrows. Animal Behaviour, 59 1, 21–27. DOI logoGoogle Scholar
Beecher, M. D., & Akçay, Ç.
(2021) Social factors in bird-song development: Learning to sing with friends and rivals. Learning & Behavior, 49 1, 137–149. DOI logoGoogle Scholar
Benichov, J. I., Benezra, S. E., Vallentin, D., Globerson, E., Long, M. A., & Tchernichovski, O.
(2016) The forebrain song system mediates predictive call timing in female and male zebra finches. Current Biology, 26 1, 309–318. DOI logoGoogle Scholar
Berg, K. S., Delgado, S., & Mata-Betancourt, A.
(2019) Phylogenetic and kinematic constraints on avian flight signals. Proceedings of the Royal Society B, 286 1, 20191083. DOI logoGoogle Scholar
Bierbach, D., Francisco, F., Lukas, J., Landgraf, T., Maxeiner, M., Romanczuk, P., … & Krause, J.
(2021) Biomimetic robots promote the 3Rs Principle in animal testing. In ALIFE 2021: The 2021 Conference on Artificial Life. MIT Press. DOI logo
Birkhead, T. R., & Van Balen, S.
(2008) Bird-keeping and the development of ornithological science. Archives of Natural History, 35 1, 281–305. DOI logoGoogle Scholar
Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., … & Kirschel, A. N.
(2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. Journal of Applied Ecology, 48 1, 758–767. DOI logoGoogle Scholar
Bolhuis, J. J. & Everaert, M.
(2013) Birdsong, speech, and language: exploring the evolution of mind and brain. MIT press. DOI logoGoogle Scholar
Burt, J. M., O’Loghlen, A. L., Templeton, C. N., Campbell, S. E., & Beecher, M. D.
(2007) Assessing the importance of social factors in bird song learning: a test using computer-simulated tutors. Ethology, 113 1, 917–925. DOI logoGoogle Scholar
Butler, S. R., & Fernández-Juricic, E.
(2014) European starlings recognize the location of robotic conspecific attention. Biology Letters, 10 1, 20140665. DOI logoGoogle Scholar
Carouso-Peck, S., Goldstein, M. H., & Fitch, W. T.
(2021) The many functions of vocal learning. Philosophical Transactions of the Royal Society B, 376, 20200235. DOI logoGoogle Scholar
Clouzot, M., & Kreutzer, M.
(2020) Croiser l’histoire des savoirs empiriques et les connaissances éthologiques pour concevoir le point de vue des oiseaux chanteurs. In: Croiser les sources pour lire les animaux (ed. E. Baratay). Presses Universitaires de la Sorbonne, pp.145–157.Google Scholar
Colavita, F. B.
(1974) Human sensory dominance. Perception & Psychophysics, 16 1, 409–412. DOI logoGoogle Scholar
Crates, R., Langmore, N., Ranjard, L., Stojanovic, D., Rayner, L., Ingwersen, D., & Heinsohn, R.
(2021) Loss of vocal culture and fitness costs in a critically endangered songbird. Proceedings of the Royal Society B, 288 1, 20210225. DOI logoGoogle Scholar
Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O.
(2005) How sleep affects the developmental learning of bird song. Nature, 433 1, 710–716. DOI logoGoogle Scholar
Derégnaucourt, S., Poirier, C., Van der Kant, A., Van der Linden, A., & Gahr, M.
(2013) Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song. Journal of Physiology-Paris, 107 1, 210–218. DOI logoGoogle Scholar
Derégnaucourt, S., Saar, S., & Gahr, M.
(2009) Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica). Proceedings of the Royal Society B: Biological Sciences, 276 1, 2153–2162. DOI logoGoogle Scholar
(2012) Melatonin affects the temporal pattern of vocal signatures in birds. Journal of Pineal Research, 53 1, 245–258. DOI logoGoogle Scholar
Deshpande, M., Pirlepesov, F., & Lints, T.
(2014) Rapid encoding of an internal model for imitative learning. Proceedings of the Royal Society B: Biological Sciences, 281 1, 20132630. DOI logoGoogle Scholar
Desmedt, L., George, I., Mohamed Benkada, A., Hervé, M., Aubin, T., Derégnaucourt, S., & Lumineau, S.
(2020) Maternal presence influences vocal development in the Japanese quail (Coturnix c. japonica). Ethology, 126 1, 553–562. DOI logoGoogle Scholar
Doupe, A. J., & Kuhl, P. K.
(1999) Birdsong and human speech: common themes and mechanisms. Annual Review of Neuroscience, 22 1, 567–631. DOI logoGoogle Scholar
Fagot, J., & Paleressompoulle, D.
(2009) Automatic testing of cognitive performance in baboons maintained in social groups. Behavior Research Methods, 41 1, 396–404. DOI logoGoogle Scholar
Fehér, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O.
(2009) De novo establishment of wild-type song culture in the zebra finch. Nature, 459 1, 564–568. DOI logoGoogle Scholar
Fritz, J-M.
(2016) Le chant de l’oiseau est-il une musique ? Réponses du clerc, réponses du poète. In : D’ailes et d’oiseaux au Moyen Âge. Langue, littérature et histoire des sciences (ed. C. Thomasset). Honoré Champion : Paris, pp 219–240.Google Scholar
Gardner, T. J., Naef, F., & Nottebohm, F.
(2005) Freedom and rules: the acquisition and reprogramming of a bird’s learned song. Science, 308 1, 1046–1049. DOI logoGoogle Scholar
Gehrold, A., Leitner, S., Laucht, S., & Derégnaucourt, S.
(2013) Heterospecific exposure affects the development of secondary sexual traits in male zebra finches (Taeniopygia guttata). Behavioural processes, 941, 67–75. DOI logoGoogle Scholar
George, J. M., Bell, Z. W., Condliffe, D., Dohrer, K., Abaurrea, T., Spencer, K., … & Clayton, D. F.
(2020) Acute social isolation alters neurogenomic state in songbird forebrain. Proceedings of the National Academy of Sciences, 117 1, 23311–23316. DOI logoGoogle Scholar
Gill, L. F., Goymann, W., Ter Maat, A., & Gahr, M.
(2015) Patterns of call communication between group-housed zebra finches change during the breeding cycle. Elife, 4 1, e07770. DOI logoGoogle Scholar
Gill, L. F., D’Amelio, P. B., Adreani, N. M., Sagunsky, H., Gahr, M. C., & Ter Maat, A.
(2016) A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution. Methods in Ecology and Evolution, 7 1, 1349–1358. DOI logoGoogle Scholar
Gribovskiy, A., Halloy, J., Deneubourg, J. L., & Mondada, F.
(2018) Designing a socially integrated mobile robot for ethological research. Robotics and Autonomous Systems, 103 1, 42–55. DOI logoGoogle Scholar
Hervieux de Chanteloup, J. C.
(1709) Nouveau traité des serins de canarie. Paris: Claude Prudhomme.Google Scholar
Hoffmann, S., Trost, L., Voigt, C., Leitner, S., Lemazina, A., Sagunsky, H., … & Gahr, M.
(2019) Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nature communications, 10 1, 1–11. DOI logoGoogle Scholar
Hultsch, H., Schleuss, F., & Todt, D.
(1999) Auditory–visual stimulus pairing enhances perceptual learning in a songbird. Animal Behaviour, 58 1, 143–149. DOI logoGoogle Scholar
Hyland Bruno, J., Jarvis, E. D., Liberman, M., & Tchernichovski, O.
(2021) Birdsong learning and culture: analogies with human spoken language. Annual Review of Linguistics, 7 1, 449–472. DOI logoGoogle Scholar
Ikebuchi, M., & Okanoya, K.
(1999) Male zebra finches and Bengalese finches emit directed songs to the video images of conspecific females projected onto a TFT display. Zoological Science, 16 1, 63–70. DOI logoGoogle Scholar
James, L. S., & Sakata, J. T.
(2017) Learning biases underlie “universals” in avian vocal sequencing. Current Biology, 27 1, 3676–3682. DOI logoGoogle Scholar
Janik, V. M., & Slater, P. J.
(1997) Vocal learning in mammals. Advances in the Study of Behaviour, 26 1, 59–100. DOI logoGoogle Scholar
Jolly, L., Pittet, F., Caudal, J. P., Mouret, J. B., Houdelier, C., Lumineau, S., & de Margerie, E.
(2016) Animal-to-robot social attachment: initial requisites in a gallinaceous bird. Bioinspiration & biomimetics, 11 1, 016007. DOI logoGoogle Scholar
Jones, A. E., ten Cate, C., & Bijleveld, C. C.
(2001) The interobserver reliability of scoring sonagrams by eye: a study on methods, illustrated on zebra finch songs. Animal Behaviour, 4 1, 791–801. DOI logoGoogle Scholar
Kroodsma, D., Hamilton, D., Sánchez, J. E., Byers, B. E., Fandiño-Mariño, H., Stemple, D. W., ... & Powell, G. V.
(2013) Behavioral evidence for song learning in the suboscine bellbirds (Procnias spp.; Cotingidae). The Wilson Journal of Ornithology, 1251, 1–14. DOI logoGoogle Scholar
Lachlan, R. F., Verhagen, L., Peters, S., & Cate, C. T.
(2010) Are there species-universal categories in bird song phonology and syntax? A comparative study of chaffinches (Fringilla coelebs), zebra finches (Taeniopygia guttata), and swamp sparrows (Melospiza georgiana). Journal of Comparative Psychology, 124 1, 92. DOI logoGoogle Scholar
Lafon, G., Howard, S. R., Paffhausen, B. H., Avarguès-Weber, A., & Giurfa, M.
(2021) Motion cues from the background influence associative color learning of honey bees in a virtual-reality scenario. Scientific Reports, 11 1, 1–20. DOI logoGoogle Scholar
Lehrman, D. S.
(1953) A critique of Konrad Lorenz’s theory of instinctive behavior. The Quarterly Review of Biology, 28 1, 337–363. [URL]. DOI logo
Lerch, A., Roy, P., Pachet, F., & Nagle, L.
(2011) Closed-loop bird–computer interactions: a new method to study the role of bird calls. Animal Cognition, 14 1, 203–211. DOI logoGoogle Scholar
Levinson, S. C.
(2016) Turn-taking in human communication–origins and implications for language processing. Trends in Cognitive Sciences, 20 1, 6–14. DOI logoGoogle Scholar
Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., … & Tchernichovski, O.
(2013) Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature, 498 1, 104–108. DOI logoGoogle Scholar
Lipkind, D., Zai, A. T., Hanuschkin, A., Marcus, G. F., Tchernichovski, O., & Hahnloser, R. H.
(2017) Songbirds work around computational complexity by learning song vocabulary independently of sequence. Nature communications, 8 1, 1–11. DOI logoGoogle Scholar
Lipkind, D., Geambasu, A., & Levelt, C. C.
(2020) The development of structured vocalizations in songbirds and humans: a comparative analysis. Topics in Cognitive Science, 12 1, 894–909. DOI logoGoogle Scholar
Ljubičić, I., Bruno, J. H., & Tchernichovski, O.
(2016) Social influences on song learning. Current Opinion in Behavioral Sciences, 7 1, 101–107. DOI logoGoogle Scholar
Macedo-Lima, M., & Remage-Healey, L.
(2020) Auditory learning in an operant task with social reinforcement is dependent on neuroestrogen synthesis in the male songbird auditory cortex. Hormones and behavior, 121 1, 104713. DOI logoGoogle Scholar
Marler, P.
(1970) Birdsong and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species conform, including man. American Scientist, 58 1, 669–673. [URL]
Marler, P., & Peters, S.
(1977) Selective vocal learning in a sparrow. Science, 1981, 519–521. DOI logoGoogle Scholar
Mennill, D. J., Doucet, S. M., Newman, A. E., Williams, H., Moran, I. G., Thomas, I. P., … & Norris, D. R.
(2018) Wild birds learn songs from experimental vocal tutors. Current Biology, 28 1, 3273–3278. DOI logoGoogle Scholar
(2019) Eavesdropping on adult vocal interactions does not enhance juvenile song learning: an experiment with wild songbirds. Animal Behaviour, 155 1, 67–75. DOI logoGoogle Scholar
Mets, D. G., & Brainard, M. S.
(2018a) An automated approach to the quantitation of vocalizations and vocal learning in the songbird. PLoS Computational Biology, 14 1, e1006437. DOI logoGoogle Scholar
(2018b) Genetic variation interacts with experience to determine interindividual differences in learned song. Proceedings of the National Academy of Sciences, 115 1, 421–426. DOI logoGoogle Scholar
(2019) Learning is enhanced by tailoring instruction to individual genetic differences. Elife, 8 1, e47216. DOI logoGoogle Scholar
Mulligan, J. A., & Olsen, K. C.
(1969) Communication in canary courtship calls. Bird vocalisation. Cambridge University Press, Cambridge, 165–184.Google Scholar
Narula, G., Herbst, J. A., Rychen, J., & Hahnloser, R. H.
(2018) Learning auditory discriminations from observation is efficient but less robust than learning from experience. Nature Communications, 9 1, 1–11. DOI logoGoogle Scholar
Nicolai, J., Gundacker, C., Teeselink, K., & Güttinger, H. R.
(2014) Human melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence processing. Animal Cognition, 17 1, 143–155. DOI logoGoogle Scholar
Nobleville de, L. D. A.
(1751) Aëdologie, ou Traité du rossignol franc ou chanteur. Paris: Debure l’ainé.Google Scholar
Okanoya, K., & Kimura, T.
(1993) A software bird call detector and its application to automated playback experiments. Bioacoustics, 5 1, 117–122. DOI logoGoogle Scholar
Patricelli, G. L., Uy, J. A. C., Walsh, G., & Borgia, G.
(2002) Male displays adjusted to female’s response. Nature, 415 1, 279–280. DOI logoGoogle Scholar
Patricelli, G. L., Coleman, S. W., & Borgia, G.
(2006) Male satin bowerbirds, Ptilonorhynchus violaceus, adjust their display intensity in response to female startling: an experiment with robotic females. Animal Behaviour, 71 1, 49–59. DOI logoGoogle Scholar
Pepperberg, I. M.
(1985) Social modeling theory: A possible framework for understanding avian vocal learning. The Auk, 102 1, 854–864. [URL]
Perry, A. C., Krakauer, A. H., McElreath, R., Harris, D. J., & Patricelli, G. L.
(2019) Hidden Markov models reveal tactical adjustment of temporally clustered courtship displays in response to the behaviors of a robotic female. The American Naturalist, 194 1, 1–16. DOI logoGoogle Scholar
Petkov, C. I., & Jarvis, E. D.
(2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in evolutionary neuroscience, 41, 12. DOI logoGoogle Scholar
Poirier, C., Henry, L., Mathelier, M., Lumineau, S., Cousillas, H., & Hausberger, M.
(2004) Direct social contacts override auditory information in the song-learning process in starlings (Sturnus vulgaris). Journal of Comparative Psychology, 118 1, 179. DOI logoGoogle Scholar
Romano, D., Donati, E., Benelli, G., & Stefanini, C.
(2019) A review on animal–robot interaction: from bio-hybrid organisms to mixed societies. Biological cybernetics, 1131, 201–225. DOI logoGoogle Scholar
Rychen, J., Rodrigues, D. I., Tomka, T., Rüttimann, L., Yamahachi, H., & Hahnloser, R. H.
(2021) A system for controlling vocal communication networks. Scientific Reports, 111, 1–15. DOI logoGoogle Scholar
Shank, S. S., & Margoliash, D.
(2009) Sleep and sensorimotor integration during early vocal learning in a songbird. Nature, 458 1, 73–77. DOI logoGoogle Scholar
Slater, P. J.
(2003) Fifty years of bird song research: a case study in animal behaviour. Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour, 651, 633–639. DOI logoGoogle Scholar
Stowell, D., & Sueur, J.
(2020) Ecoacoustics: acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and Conservation, 6 1, 217–219. DOI logoGoogle Scholar
Stresemann, E.
(1947) Baron von Pernau, pioneer student of bird behavior. The Auk, 64 1, 35–52. DOI logoGoogle Scholar
Tchernichovski, O., Lints, T., Mitra, P. P., & Nottebohm, F.
(1999) Vocal imitation in zebra finches is inversely related to model abundance. Proceedings of the National Academy of Sciences, 96 1, 12901–12904. DOI logoGoogle Scholar
Tchernichovski, O., Lints, T. J., Derégnaucourt, S., Cimenser, A., & Mitra, P. P.
(2004) Studying the song development process: rationale and methods. Annals of the New York Academy of Sciences, 10161, 348–363. DOI logoGoogle Scholar
Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B., & Mitra, P. P.
(2000) A procedure for an automated measurement of song similarity. Animal behaviour, 591, 1167–1176. DOI logoGoogle Scholar
Ten Cate, C.
(2021) Re-evaluating vocal production learning in non-oscine birds. Philosophical Transactions of the Royal Society B, 3761, 20200249. DOI logoGoogle Scholar
Thorpe, W. H.
(1958) The learning of song patterns by birds, with especial reference to the song of the chaffinch Fringilla coelebs . Ibis, 100, 535–570. DOI logoGoogle Scholar
Todt, D.
(1975) Social learning of vocal patterns and modes of their application in grey parrots (Psittacus erithacus). Zeitschrift für Tierpsychologie, 391, 178–188. DOI logoGoogle Scholar
Tokarev, K. & Tchernichovski, O.
(2014) A novel paradigm for auditory discrimination training with social reinforcement in songbirds. BioRxiv: 004176. DOI logoGoogle Scholar
Tyack, P. L.
(2020) A taxonomy for vocal learning. Philosophical Transactions of the Royal Society B, 375 1, 20180406. DOI logoGoogle Scholar
Varkevisser, J. M., Simon, R., Mendoza, E., How, M., van Hijlkema, I., Jin, R., … & Riebel, K.
(2021) Adding colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra finches. Animal cognition, 1–26. DOI logoGoogle Scholar
Vehrencamp, S. L.
(2001) Is song–type matching a conventional signal of aggressive intentions? Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 1, 1637–1642. DOI logoGoogle Scholar
Watson, S. K., Townsend, S. W., Schel, A. M., Wilke, C., Wallace, E. K., Cheng, L., … & Slocombe, K. E.
(2015) Vocal learning in the functionally referential food grunts of chimpanzees. Current Biology, 251, 495–499. DOI logoGoogle Scholar