Alice Araguas |
University Paris Nanterre |
University Paris Lumières
Bahia Guellaï |
University Paris Nanterre |
University Paris Lumières |
Institut Universitaire de France |
University Jean Jaures
Birds produce different types of sounds in different contexts such as begging for food in youngsters, alerting to
a danger, defending a territory or attracting a sexual partner. About half of the bird species are able to transform their
vocalizations through imitation, improvisation or invention of sounds. Here we review the different experimental procedures that
have been used to study the learning capacities of birds in the vocal domain and in the auditory domain, with a particular
emphasis on recent technological developments. Nowadays, it is possible to record individual vocalizations of birds living in
social groups or to record continuously the vocal ontogeny of birdsong. In conditioning experiments, new paradigms have
successfully replaced food rewards with a socio-sexual reward. It is possible to engage in vocal interactions with a bird using
dedicated computer systems. In both the laboratory and more recently in the field, different techniques have been used to train
young oscine songbirds to learn from acoustic models. The use of virtual social environments and robots as social agents are also
promising avenues. All together, these new techniques will permit researchers to explore more deeply the umwelt of bird
species.
(1993a) Operant
conditioning, song learning and imprinting to taped song in the zebra finch. Animal
Behaviour,
46
1, 149–159.
Adret, P.
(1993b) Vocal
learning induced with operant techniques: an overview. Netherlands Journal of
Zoology,
43
1, 125–125.
Adret, P.
(1997) Discrimination
of video images by zebra finches (Taeniopygia guttata): direct evidence from song
performance. Journal of Comparative
Psychology,
111
1, 115–125.
Akçay, Ç.
L., Tom, M. E., Campbell, S. E., & Beecher, M. D.
(2013) Song
type matching is an honest early threat signal in a hierarchical animal communication
system. Proceedings of the Royal Society B: Biological
Sciences,
280
1, 20122517.
Anisimov, V. N., Herbst, J. A., Abramchuk, A. N., Latanov, A. V., Hahnloser, R. H., & Vyssotski, A. L.
(2014) Reconstruction
of vocal interactions in a group of small songbirds. Nature
Methods,
11
1, 1135–1137.
Araguas, A., Guellaï, B., Gauthier, P., Richer, F., Montone, G., Chopin, A., & Derégnaucourt, S.
(2022) Design
of a robotic zebra finch for experimental studies on developmental song learning. Journal of
Experimental
Biology,
225
1, jeb242949.
Arnold, F., Staniszewski, M. S., Pelzl, L., Ramenda, C., Gahr, M., & Hoffmann, S.
(2022) Vision
and vocal communication guide three-dimensional spatial coordination of zebra finches during wind-tunnel
flights. Nature Ecology &
Evolution,
6
1, 1221–1230.
(1984) Social interaction, sensitive phases and the song template hypothesis in the white-crowned sparrow. Animal Behaviour, 321, 172–181.
Baptista, L. F., & Petrinovich, L.
(1986) Song
development in the white-crowned sparrow: social factors and sex differences. Animal
Behaviour,
34
1, 1359–1371.
Beecher, M. D., Campbell, S. E., Burt, J. M., Hill, C. E., & Nordby, J. C.
(2000) Song-type
matching between neighbouring song sparrows. Animal
Behaviour,
59
1, 21–27.
Beecher, M. D., & Akçay, Ç.
(2021) Social
factors in bird-song development: Learning to sing with friends and rivals. Learning &
Behavior,
49
1, 137–149.
Benichov, J. I., Benezra, S. E., Vallentin, D., Globerson, E., Long, M. A., & Tchernichovski, O.
(2016) The
forebrain song system mediates predictive call timing in female and male zebra finches. Current
Biology,
26
1, 309–318.
Berg, K. S., Delgado, S., & Mata-Betancourt, A.
(2019) Phylogenetic
and kinematic constraints on avian flight signals. Proceedings of the Royal Society
B,
286
1, 20191083.
Bierbach, D., Francisco, F., Lukas, J., Landgraf, T., Maxeiner, M., Romanczuk, P., … & Krause, J.
(2021) Biomimetic
robots promote the 3Rs Principle in animal testing. In ALIFE 2021:
The 2021 Conference on Artificial Life. MIT Press.
Birkhead, T. R., & Van
Balen, S.
(2008) Bird-keeping
and the development of ornithological science. Archives of Natural
History,
35
1, 281–305.
Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., … & Kirschel, A. N.
(2011) Acoustic
monitoring in terrestrial environments using microphone arrays: applications, technological considerations and
prospectus. Journal of Applied
Ecology,
48
1, 758–767.
Bolhuis, J. J. & Everaert, M.
(2013) Birdsong,
speech, and language: exploring the evolution of mind and brain. MIT press.
Burt, J. M., O’Loghlen, A. L., Templeton, C. N., Campbell, S. E., & Beecher, M. D.
(2007) Assessing
the importance of social factors in bird song learning: a test using computer-simulated
tutors. Ethology,
113
1, 917–925.
Butler, S. R., & Fernández-Juricic, E.
(2014) European
starlings recognize the location of robotic conspecific attention. Biology
Letters,
10
1, 20140665.
Carouso-Peck, S., Goldstein, M. H., & Fitch, W. T.
(2021) The many functions of vocal learning. Philosophical Transactions of the Royal Society B, 376, 20200235.
Clouzot, M., & Kreutzer, M.
(2020) Croiser
l’histoire des savoirs empiriques et les connaissances éthologiques pour concevoir le point de vue des oiseaux
chanteurs. In: Croiser les sources pour lire les
animaux (ed. E. Baratay). Presses Universitaires de la Sorbonne, pp.145–157.
Colavita, F. B.
(1974) Human
sensory dominance. Perception &
Psychophysics,
16
1, 409–412.
Crates, R., Langmore, N., Ranjard, L., Stojanovic, D., Rayner, L., Ingwersen, D., & Heinsohn, R.
(2021) Loss
of vocal culture and fitness costs in a critically endangered songbird. Proceedings of the
Royal Society B,
288
1, 20210225.
Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O.
(2005) How
sleep affects the developmental learning of bird
song. Nature,
433
1, 710–716.
Derégnaucourt, S., Poirier, C., Van
der Kant, A., Van der
Linden, A., & Gahr, M.
(2013) Comparisons
of different methods to train a young zebra finch (Taeniopygia guttata) to learn a
song. Journal of
Physiology-Paris,
107
1, 210–218.
Derégnaucourt, S., Saar, S., & Gahr, M.
(2009) Dynamics
of crowing development in the domestic Japanese quail (Coturnix coturnix
japonica). Proceedings of the Royal Society B: Biological
Sciences,
276
1, 2153–2162.
Derégnaucourt, S., Saar, S., & Gahr, M.
(2012) Melatonin
affects the temporal pattern of vocal signatures in birds. Journal of Pineal
Research,
53
1, 245–258.
Deshpande, M., Pirlepesov, F., & Lints, T.
(2014) Rapid
encoding of an internal model for imitative learning. Proceedings of the Royal Society B:
Biological Sciences,
281
1, 20132630.
Desmedt, L., George, I., Mohamed
Benkada, A., Hervé, M., Aubin, T., Derégnaucourt, S., & Lumineau, S.
(2020) Maternal
presence influences vocal development in the Japanese quail (Coturnix c.
japonica). Ethology,
126
1, 553–562.
Doupe, A. J., & Kuhl, P. K.
(1999) Birdsong
and human speech: common themes and mechanisms. Annual Review of
Neuroscience,
22
1, 567–631.
Fagot, J., & Paleressompoulle, D.
(2009) Automatic
testing of cognitive performance in baboons maintained in social groups. Behavior Research
Methods,
41
1, 396–404.
Fehér, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O.
(2009) De
novo establishment of wild-type song culture in the zebra
finch. Nature,
459
1, 564–568.
Fritz, J-M.
(2016) Le chant de l’oiseau est-il une musique ? Réponses du clerc, réponses du poète. In : D’ailes et d’oiseaux au Moyen Âge. Langue, littérature et histoire des sciences (ed. C. Thomasset). Honoré Champion : Paris, pp 219–240.
Gardner, T. J., Naef, F., & Nottebohm, F.
(2005) Freedom
and rules: the acquisition and reprogramming of a bird’s learned
song. Science,
308
1, 1046–1049.
Gehrold, A., Leitner, S., Laucht, S., & Derégnaucourt, S.
(2013) Heterospecific exposure affects the development of secondary sexual traits in male zebra finches (Taeniopygia guttata). Behavioural processes, 941, 67–75.
George, J. M., Bell, Z. W., Condliffe, D., Dohrer, K., Abaurrea, T., Spencer, K., … & Clayton, D. F.
(2020) Acute
social isolation alters neurogenomic state in songbird forebrain. Proceedings of the National
Academy of
Sciences,
117
1, 23311–23316.
Gill, L. F., Goymann, W., Ter
Maat, A., & Gahr, M.
(2015) Patterns
of call communication between group-housed zebra finches change during the breeding
cycle. Elife,
4
1, e07770.
Gill, L. F., D’Amelio, P. B., Adreani, N. M., Sagunsky, H., Gahr, M. C., & Ter
Maat, A.
(2016) A
minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level
resolution. Methods in Ecology and
Evolution,
7
1, 1349–1358.
Gribovskiy, A., Halloy, J., Deneubourg, J. L., & Mondada, F.
(2018) Designing
a socially integrated mobile robot for ethological research. Robotics and Autonomous
Systems,
103
1, 42–55.
Hervieux de
Chanteloup, J. C.
(1709) Nouveau
traité des serins de canarie. Paris: Claude Prudhomme.
Hoffmann, S., Trost, L., Voigt, C., Leitner, S., Lemazina, A., Sagunsky, H., … & Gahr, M.
(2019) Duets
recorded in the wild reveal that interindividually coordinated motor control enables cooperative
behavior. Nature
communications,
10
1, 1–11.
Hultsch, H., Schleuss, F., & Todt, D.
(1999) Auditory–visual
stimulus pairing enhances perceptual learning in a songbird. Animal
Behaviour,
58
1, 143–149.
Hyland
Bruno, J., Jarvis, E. D., Liberman, M., & Tchernichovski, O.
(2021) Birdsong
learning and culture: analogies with human spoken language. Annual Review of
Linguistics,
7
1, 449–472.
Ikebuchi, M., & Okanoya, K.
(1999) Male
zebra finches and Bengalese finches emit directed songs to the video images of conspecific females projected onto a TFT
display. Zoological
Science,
16
1, 63–70.
James, L. S., & Sakata, J. T.
(2017) Learning
biases underlie “universals” in avian vocal sequencing. Current
Biology,
27
1, 3676–3682.
Janik, V. M., & Slater, P. J.
(1997) Vocal
learning in mammals. Advances in the Study of
Behaviour,
26
1, 59–100.
Jolly, L., Pittet, F., Caudal, J. P., Mouret, J. B., Houdelier, C., Lumineau, S., & de
Margerie, E.
(2016) Animal-to-robot
social attachment: initial requisites in a gallinaceous bird. Bioinspiration &
biomimetics,
11
1, 016007.
Jones, A. E., ten
Cate, C., & Bijleveld, C. C.
(2001) The
interobserver reliability of scoring sonagrams by eye: a study on methods, illustrated on zebra finch
songs. Animal
Behaviour,
4
1, 791–801.
Kroodsma, D., Hamilton, D., Sánchez, J. E., Byers, B. E., Fandiño-Mariño, H., Stemple, D. W., ... & Powell, G. V.
(2013) Behavioral evidence for song learning in the suboscine bellbirds (Procnias spp.; Cotingidae). The Wilson Journal of Ornithology, 1251, 1–14.
Lachlan, R. F., Verhagen, L., Peters, S., & Cate, C. T.
(2010) Are
there species-universal categories in bird song phonology and syntax? A comparative study of chaffinches (Fringilla
coelebs), zebra finches (Taeniopygia guttata), and swamp sparrows (Melospiza
georgiana). Journal of Comparative
Psychology,
124
1, 92.
Lafon, G., Howard, S. R., Paffhausen, B. H., Avarguès-Weber, A., & Giurfa, M.
(2021) Motion
cues from the background influence associative color learning of honey bees in a virtual-reality
scenario. Scientific
Reports,
11
1, 1–20.
Lehrman, D. S.
(1953) A
critique of Konrad Lorenz’s theory of instinctive behavior. The Quarterly Review of
Biology,
28
1, 337–363. [URL].
Lerch, A., Roy, P., Pachet, F., & Nagle, L.
(2011) Closed-loop
bird–computer interactions: a new method to study the role of bird calls. Animal
Cognition,
14
1, 203–211.
Levinson, S. C.
(2016) Turn-taking
in human communication–origins and implications for language processing. Trends in Cognitive
Sciences,
20
1, 6–14.
Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., … & Tchernichovski, O.
(2013) Stepwise
acquisition of vocal combinatorial capacity in songbirds and human
infants. Nature,
498
1, 104–108.
Lipkind, D., Zai, A. T., Hanuschkin, A., Marcus, G. F., Tchernichovski, O., & Hahnloser, R. H.
(2017) Songbirds
work around computational complexity by learning song vocabulary independently of
sequence. Nature
communications,
8
1, 1–11.
Lipkind, D., Geambasu, A., & Levelt, C. C.
(2020) The
development of structured vocalizations in songbirds and humans: a comparative analysis. Topics
in Cognitive
Science,
12
1, 894–909.
Ljubičić, I., Bruno, J. H., & Tchernichovski, O.
(2016) Social
influences on song learning. Current Opinion in Behavioral
Sciences,
7
1, 101–107.
Macedo-Lima, M., & Remage-Healey, L.
(2020) Auditory
learning in an operant task with social reinforcement is dependent on neuroestrogen synthesis in the male songbird auditory
cortex. Hormones and
behavior,
121
1, 104713.
Marler, P.
(1970) Birdsong
and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species
conform, including man. American
Scientist,
58
1, 669–673. [URL]
Marler, P., & Peters, S.
(1977) Selective vocal learning in a sparrow. Science, 1981, 519–521.
Mennill, D. J., Doucet, S. M., Newman, A. E., Williams, H., Moran, I. G., Thomas, I. P., … & Norris, D. R.
(2018) Wild
birds learn songs from experimental vocal tutors. Current
Biology,
28
1, 3273–3278.
Mennill, D. J., Doucet, S. M., Newman, A. E., Williams, H., Moran, I. G., Thomas, I. P., … & Norris, D. R.
(2019) Eavesdropping
on adult vocal interactions does not enhance juvenile song learning: an experiment with wild
songbirds. Animal
Behaviour,
155
1, 67–75.
Mets, D. G., & Brainard, M. S.
(2018a) An
automated approach to the quantitation of vocalizations and vocal learning in the
songbird. PLoS Computational
Biology,
14
1, e1006437.
Mets, D. G., & Brainard, M. S.
(2018b) Genetic
variation interacts with experience to determine interindividual differences in learned
song. Proceedings of the National Academy of
Sciences,
115
1, 421–426.
Mets, D. G., & Brainard, M. S.
(2019) Learning
is enhanced by tailoring instruction to individual genetic
differences. Elife,
8
1, e47216.
Mulligan, J. A., & Olsen, K. C.
(1969) Communication
in canary courtship calls. Bird vocalisation. Cambridge University Press, Cambridge, 165–184.
Narula, G., Herbst, J. A., Rychen, J., & Hahnloser, R. H.
(2018) Learning
auditory discriminations from observation is efficient but less robust than learning from
experience. Nature
Communications,
9
1, 1–11.
Nicolai, J., Gundacker, C., Teeselink, K., & Güttinger, H. R.
(2014) Human
melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence
processing. Animal
Cognition,
17
1, 143–155.
Nobleville
de, L. D. A.
(1751) Aëdologie,
ou Traité du rossignol franc ou chanteur. Paris: Debure l’ainé.
Okanoya, K., & Kimura, T.
(1993) A
software bird call detector and its application to automated playback
experiments. Bioacoustics,
5
1, 117–122.
Patricelli, G. L., Uy, J. A. C., Walsh, G., & Borgia, G.
(2002) Male
displays adjusted to female’s
response. Nature,
415
1, 279–280.
Patricelli, G. L., Coleman, S. W., & Borgia, G.
(2006) Male
satin bowerbirds, Ptilonorhynchus violaceus, adjust their display intensity in response to female startling:
an experiment with robotic females. Animal
Behaviour,
71
1, 49–59.
Pepperberg, I. M.
(1985) Social
modeling theory: A possible framework for understanding avian vocal learning. The
Auk,
102
1, 854–864. [URL]
Perry, A. C., Krakauer, A. H., McElreath, R., Harris, D. J., & Patricelli, G. L.
(2019) Hidden
Markov models reveal tactical adjustment of temporally clustered courtship displays in response to the behaviors of a robotic
female. The American
Naturalist,
194
1, 1–16.
Petkov, C. I., & Jarvis, E. D.
(2012) Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in evolutionary neuroscience, 41, 12.
Poirier, C., Henry, L., Mathelier, M., Lumineau, S., Cousillas, H., & Hausberger, M.
(2004) Direct
social contacts override auditory information in the song-learning process in starlings (Sturnus
vulgaris). Journal of Comparative
Psychology,
118
1, 179.
Romano, D., Donati, E., Benelli, G., & Stefanini, C.
(2019) A
review on animal–robot interaction: from bio-hybrid organisms to mixed societies. Biological
cybernetics, 1131, 201–225.
Rychen, J., Rodrigues, D. I., Tomka, T., Rüttimann, L., Yamahachi, H., & Hahnloser, R. H.
(2021) A
system for controlling vocal communication networks. Scientific
Reports, 111, 1–15.
Shank, S. S., & Margoliash, D.
(2009) Sleep
and sensorimotor integration during early vocal learning in a
songbird. Nature,
458
1, 73–77.
Slater, P. J.
(2003) Fifty years of bird song research: a case study in animal behaviour. Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour, 651, 633–639.
Stowell, D., & Sueur, J.
(2020) Ecoacoustics:
acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and
Conservation,
6
1, 217–219.
Stresemann, E.
(1947) Baron
von Pernau, pioneer student of bird behavior. The
Auk,
64
1, 35–52.
Tchernichovski, O., Lints, T., Mitra, P. P., & Nottebohm, F.
(1999) Vocal
imitation in zebra finches is inversely related to model abundance. Proceedings of the National
Academy of
Sciences,
96
1, 12901–12904.
Tchernichovski, O., Lints, T. J., Derégnaucourt, S., Cimenser, A., & Mitra, P. P.
(2004) Studying
the song development process: rationale and methods. Annals of the New York Academy of
Sciences, 10161, 348–363.
Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B., & Mitra, P. P.
(2000) A procedure for an automated measurement of song similarity. Animal behaviour, 591, 1167–1176.
Ten
Cate, C.
(2021) Re-evaluating
vocal production learning in non-oscine birds. Philosophical Transactions of the Royal Society
B, 3761, 20200249.
Thorpe, W. H.
(1958) The learning of song patterns by birds, with especial reference to the song of the chaffinch Fringilla coelebs. Ibis, 100, 535–570.
Todt, D.
(1975) Social
learning of vocal patterns and modes of their application in grey parrots (Psittacus
erithacus). Zeitschrift für
Tierpsychologie, 391, 178–188.
Tokarev, K. & Tchernichovski, O.
(2014) A
novel paradigm for auditory discrimination training with social reinforcement in
songbirds. BioRxiv: 004176.
Tyack, P. L.
(2020) A
taxonomy for vocal learning. Philosophical Transactions of the Royal Society
B,
375
1, 20180406.
Varkevisser, J. M., Simon, R., Mendoza, E., How, M., van
Hijlkema, I., Jin, R., … & Riebel, K.
(2021) Adding
colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra
finches. Animal
cognition, 1–26.
Vehrencamp, S. L.
(2001) Is
song–type matching a conventional signal of aggressive intentions?Proceedings of the Royal
Society of London. Series B: Biological
Sciences,
268
1, 1637–1642.
Watson, S. K., Townsend, S. W., Schel, A. M., Wilke, C., Wallace, E. K., Cheng, L., … & Slocombe, K. E.
(2015) Vocal
learning in the functionally referential food grunts of chimpanzees. Current
Biology, 251, 495–499.