Vocalize to localize
A test on functionally referential alarm calls
Marta B. Manser | Verhaltensbiologie, Zoologisches Institut, Universität Zürich, Switzerland
In this study of the functionally referential alarm calls in the meerkats (Suricata suricatta), we tested the hypothesis that the ability to refer to a specific location was an important factor in the evolution of discrete vocalizations. We investigated what information receivers gained about the location of the predator from alarm calls with high stimulus specificity compared to alarm calls with low stimulus specificity. Furthermore, we studied whether visual cues about the localization of the predator may be available from the posture of the caller. We described the general behaviour of the caller, the caller’s posture, and in particular its gaze direction. We then observed receivers responding to the different call types, to determine whether the acoustic structure of the calls was enough for them to respond in the appropriate way, or whether they used additional visual cues from the caller. We tested this with specific manipulation experiments, using three set ups of playback experiments: (1) no caller visible; (2) model guard with specific gaze direction; and (3) live sentinel. Natural observations and experiments confirmed that in high urgency situations the meerkats have enough information from the acoustic structure of the call to respond appropriately. When hearing low urgency calls that are less stimuli specific, meerkats used visual cues as an additional source of information in a few cases. This may indicate that functionally referential calls evolved to denote the location of the predator, rather than the predator type or its velocity of approach. However, when discussing this result in comparison to other functionally referential calls, such as the food associated calls and recruitment calls, this localization hypothesis does not appear to apply to the functionally referential calls in general.
Cited by (1)
Cited by one other publication
Moulin-Frier, Clément, Julien Diard, Jean-Luc Schwartz & Pierre Bessière
2015.
COSMO (“Communicating about Objects using Sensory–Motor Operations”): A Bayesian modeling framework for studying speech communication and the emergence of phonological systems.
Journal of Phonetics 53
► pp. 5 ff.
This list is based on CrossRef data as of 12 september 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.