Review published In:
Journal of Historical Linguistics
Vol. 14:2 (2024) ► pp.376384
References (15)
References
Chen, X., L. Xu, Z. Liu, M. Sun & H. -B. Luan. 2015. Joint Learning of Character and Word Embeddings. Proceedings of IJCAI 2015, 1236–1242. Cambridge, MA: AAAI Press.Google Scholar
Davies, M. 2008. The Corpus of Contemporary American English (COCA): 560 Million Words, 1990–Present.Google Scholar
2012. Expanding Horizons in Historical Linguistics with the 400-Million Word Corpus of Historical American English. Corpora 7:2.121–157. DOI logoGoogle Scholar
Devlin, J., M. -W. Chang, K. Lee & K. Toutanova. 2019. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) ed. by Jill Burstein, Christy Doran & Thamar Solorio, 4171–4186. Minneapolis, MN: Association for Computational Linguistics.Google Scholar
Frermann, L. & M. Lapata. 2016. A Bayesian Model of Diachronic Meaning Change. Transactions of the ACL 41:31–45. DOI logoGoogle Scholar
Hamilton, W. L., J. Leskovec & D. Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ed. by Katrin Erk & Noah A. Smith, 1489–1501. Berlin: Association for Computational Linguistics. DOI logoGoogle Scholar
Haslam, N. 2016. Concept Creep: Psychology’s Expanding Concepts of Harm and Pathology. Psychological Inquiry 27:1.1–17. DOI logoGoogle Scholar
Joulin, A., E. Grave, P. Bojanowski, M. Douze, H. Jégou & T. Mikolov, T. 2016. Fasttext.zip: Compressing Text Classification Models. arXiv preprint arXiv:1612.03651.Google Scholar
McGillivray, B. & A. Kilgarriff. 2013. Tools for Historical Corpus Research and a Corpus of Latin. New Methods in Historical Corpus Linguistics ed. by P. Bennett, M. Durrell, S. Scheible & R. J. Whitt, 247–257. Tübingen: Narr.Google Scholar
Michel, J. -B., Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak & E. L. Aiden. 2011. Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331:6014.176–182. DOI logoGoogle Scholar
Mikolov, T., I. Sutskever, K. Chen, G. Corrado & J. Dean. 2013. Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems 261:3111–3119.Google Scholar
Turney, P. D. & P. Pantel. 2010. From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research 37:1.141–188. DOI logoGoogle Scholar
Vatri, A. & B. McGillivray. 2018. The Diorisis Ancient Greek Corpus. Research Data Journal for the Humanities and Social Sciences 3:1.55–65. DOI logoGoogle Scholar
Wiedemann, G., S. Remus, A. Chawla & C. Biemann. 2019. Does BERT Make any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings. In Proceedings of KONVENS 2019. Erlangen, Germany, October 9–11.Google Scholar
Yao, Z., Y. Sun, W. Ding, N. Rao & H. Xiong. 2018. Dynamic Word Embeddings for Evolving Semantic Discovery. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 673–681. Marina Del Rey, CA, February 5–9. DOI logoGoogle Scholar