Bauer, R. S., & Benedict, P. K.
(1997) Modern Cantonese phonology. Mouton de Gruyter. CrossrefGoogle Scholar
Bhatara, A., Yeung, H. H., & Nazzi, T.
(2015) Foreign language learning in french speakers is associated with rhythm perception, but not with melody perception. Journal of Experimental Psychology: Human Perception and Performance, 41(2), 277–282.Google Scholar
Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H.
(2009) Bilingual minds. Psychological Science in the Public Interest, 10(3), 89–29. CrossrefGoogle Scholar
Bidelman, G., Gandour, J., & Krishnan, A.
(2011) Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. Journal of Cognitive Neuroscience, 231, 425–434. CrossrefGoogle Scholar
Bidelman, G., Hutka, S., & Moreno, S.
(2013) Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. Plos One, 81, e60676. CrossrefGoogle Scholar
Bradley, E. D.
(2016) Phonetic dimensions of tone language effects on musical melody perception. Psychomusicology: Music, Mind, and Brain, 26(4), 337. CrossrefGoogle Scholar
Bradlow, A. R., Akahane-Yamada, R., Pisoni, D. B., & Tohkura, Y.
(1999) Training Japanese listeners to identify English /r/and /l/: Long-term retention of learning in perception and production. Perception & Psychophysics, 61(5), 977–985. CrossrefGoogle Scholar
Callan, A. M., Callan, D. E., Tajima, K., Kubo, R., Masaki, S., & Akahane-Yamada, R.
(2003) Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. Neuroimage, 19(1), 113–124. CrossrefGoogle Scholar
Chen, A., Liu, L., & Kager, R.
(2016) Cross-domain correlation in pitch perception, the influence of native language. Language, Cognition and Neuroscience, 31(6), 751–760. CrossrefGoogle Scholar
Chen, A., Peter, V., Wijnen, F., Schnack, H., & Burnham, D.
(2018) Are lexical tones musical? native language’s influence on neural response to pitch in different domains. Brain and Language, 180–1821, 31–41. CrossrefGoogle Scholar
Delogu, F., Lampis, G., & Belardinelli, M. O.
(2006) Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cognitive Processing, 7(3), 203–207. CrossrefGoogle Scholar
Deutsch, D., Henthorn, T., Marvin, E., & Xu, H.
(2006) Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period. Journal of Acoustic Society of America, 119(2), 719–722. CrossrefGoogle Scholar
Flege, J. E., Bohn, O.-S., & Jang, S.
(1997) Effects of experience on non-native speakers’ production and perception of English vowels. Journal of Phonetics, 25(4), 437–470. CrossrefGoogle Scholar
Gandour, J., & Harshman, R.
(1978) Cross-language difference in tone perception: A multidimensional scaling investigation. Language and Speech, 211, 1–33. CrossrefGoogle Scholar
Gandour, J.
(1983) Tone perception in far eastern languages. Journal of Phonetics, 111, 149–176. CrossrefGoogle Scholar
Garbin, G., Costa, A., Sanjuan, A., Forn, C., Rodriguez-Pujadas, A., Ventura, N., … Ávila, C.
(2011) Neural bases of language switching in high and early proficient bilinguals. Brain and Language, 119(3), 129–135. CrossrefGoogle Scholar
Kempe, V., Bublitz, D., & Brooks, P. J.
(2015) Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information. British Journal of Psychology, 106(2), 349–366. CrossrefGoogle Scholar
Kraus, N., & Chandrasekaran, B.
(2010) Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599–605. CrossrefGoogle Scholar
Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N.
(2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of National Academy of Science USA, 109(20), 7877. Retrieved from http://​www​.pnas​.org​/content​/109​/20​/7877​.abstract. Crossref
Lee, C. Y., & Hung, T. H.
(2008) Identification of mandarin tones by English-speaking musicians and nonmusicians. Journal of the Acoustical Society of America, 1241, 3235–3248. CrossrefGoogle Scholar
Levi, S. V.
(2005) Acoustic correlates of lexical accent in Turkish. Journal of the International Phonetic Association, 35(1), 73–97. CrossrefGoogle Scholar
Li, C., & Thompson, S. A.
(1989) Mandarin Chinese: A functional reference grammar. University of California Press.Google Scholar
Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T.
(1994) Training Japanese listeners to identify English /r/ and /l/. III. long-term retention of new phonetic categories. The Journal of the Acoustical Society of America, 96(4), 2076–2087. CrossrefGoogle Scholar
Marian, V., Blumenfeld, H. K., & Margarita, K.
(2007) The language experience and proficiency questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50(4), 940–967. CrossrefGoogle Scholar
Marie, C., Delogu, F., Lampis, G., Belardinelli, M., & Besson, M.
(2011) Influence of musical expertise on segmental and tonal processing in mandarin Chinese. Journal of Cognitive Neuroscience, 231, 2701–2715. CrossrefGoogle Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J.
(2004) Structural plasticity in the bilingual brain. Nature, 431(7010), 757. CrossrefGoogle Scholar
Milovanov, R., Huotilainen, M., Välimäki, V., Esquef, P. A. A., & Tervaniemi, M.
(2008) Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 11941, 81–89. CrossrefGoogle Scholar
Mok, P. K. P., & Zuo, D.
(2012) The separation between music and speech: Evidence from the perception of cantonese tones. The Journal of the Acoustical Society of America, 132(4), 2711–2720. CrossrefGoogle Scholar
Moore, C. B., & Jongman, A.
(1997) Speaker normalization in the perception of mandarin chinese tones. The Journal of the Acoustical Society of America, 102(3), 1864–1877. Retrieved from http://​link​.aip​.org​/link​/?JAS​/102​/1864​/1. Crossref
Osterhout, L., Poliakov, A., Inoue, K., McLaughlin, J., Valentine, G., Pitkanen, I., … Hirschensohn, J.
(2008) Second-language learning and changes in the brain. Journal of Neurolinguistics, 21(6), 509–521. CrossrefGoogle Scholar
Paap, K. R., & Greenberg, Z. I.
(2013) There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66(2), 232–258. CrossrefGoogle Scholar
Paap, K. R., Johnson, H. A., & Sawi, O.
(2015) Bilingual advantages in executive functioning either do not exist or are restricted to very specific and undetermined circumstances. Cortex, 691, 265–278. CrossrefGoogle Scholar
Pfordresher, P., & Brown, S.
(2009) Enhanced production and perception of musical pitch in tone language speakers. Attention, Perception and Psychophysics, 71(-6), 1385–1398. CrossrefGoogle Scholar
Pierrehumbert, J. B.
(1980) The phonology and phonetics of English intonation. [Doctoral dissertation]. Massachusetts Institute of Technology.Google Scholar
Roncaglia-Denissen, M., Bouwer, F. L., & Honing, H.
(2018) Decision making strategy and the simultaneous processing of syntactic dependencies in language and music. Frontiers in Psychology, 91, 38. CrossrefGoogle Scholar
Roncaglia-Denissen, M., Roor, D., Chen, A., & Sadakata, M.
(2016) The enhanced musical rhythmic perception in second language learners. Frontiers in Human Neuroscience, 101, 288. CrossrefGoogle Scholar
Roncaglia-Denissen, M., Schmidt-Kassow, M., Heine, A., Vuust, P., & Kotz, S. A.
(2013) Enhanced musical rhythmic perception in turkish early and late learners of german. Frontiers in Psychology, 41, 645. CrossrefGoogle Scholar
Roncaglia-Denissen, M., Schmidt-Kassow, M., & Kotz, S. A.
(2013) Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence. Plos One, 8(2), e56000. CrossrefGoogle Scholar
Salthouse, T. A.
(2009) When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. CrossrefGoogle Scholar
Schellenberg, E. G.
(2015) Music training and speech perception: A gene-environment interaction. Annals of the New York Academy of Sciences, 13371, 170–177. CrossrefGoogle Scholar
Schlegel, A. A., Rudelson, J. J., & Tse, P. U.
(2012) White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 1664–1670. CrossrefGoogle Scholar
Shaefer, V., & Darcy, I.
(2014) Lexical function of pitch in the first language shapes cross-linguistic perception of Thai tones. Laboratory Phonology, 51, 489–522. CrossrefGoogle Scholar
Slevc, L. R., & Miyake, A.
(2006) Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675–681. CrossrefGoogle Scholar
Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P.
(2010) The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. CrossrefGoogle Scholar
Wong, C. M. P., Skoe, E., Russo, N. M., Dees, T., & Kraus, N.
(2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 101, 420–422. CrossrefGoogle Scholar