References (38)
References
Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38 (4), 419–439. DOI logoGoogle Scholar
Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2019). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52 (1), 388–407. DOI logoGoogle Scholar
Apfelbaum, K. S., Klein-Packard, J., & McMurray, B. (2021). The pictures who shall not be named: Empirical support for benefits of preview in the visual world paradigm. Journal of Memory and Language, 121 1, 104279. DOI logoGoogle Scholar
Barr, D. J. (2008). Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59 (4), 457–474. DOI logoGoogle Scholar
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68 (3), 255–278. DOI logoGoogle Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear Mixed-Effects models using lme4. DOI logoGoogle Scholar
Bolibaugh, C., Vanek, N., & Marsden, E. J. (2021). Towards a credibility revolution in bilingualism research: Open data and materials as stepping stones to more reproducible and replicable research. Bilingualism: Language and Cognition, 24 (5), 801–806. DOI logoGoogle Scholar
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1 (1):9. DOI logoGoogle Scholar
Brown, B., Tusmagambet, B., Rahming, V., Tu, C.-Y., DeSalvo, M. B., & Wiener, S. (2023). Searching for the “native” speaker: A preregistered conceptual replication and extension of Reid, Trofimovich, and O’Brien (2019). Applied Psycholinguistics, 44 (4), 475–494. DOI logoGoogle Scholar
Chen, M. C., Anderson, J. R., & Sohn, M. H. (2001). What can a mouse cursor tell us more? CHI ’01 Extended Abstracts on Human Factors in Computing Systems. DOI logoGoogle Scholar
Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken language. Cognitive Psychology, 6 (1), 84–107. DOI logoGoogle Scholar
Coretta, S., Casillas, J. V., Roessig, S., Franke, M., Ahn, B., Al-Hoorie, A. H., Al-Tamimi, J., Alotaibi, N. E., AlShakhori, M. K., Altmiller, R. M., & et al. (2023). Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human-speech analyses. Advances in Methods and Practices in Psychological Science, 6 (3). DOI logoGoogle Scholar
Cunnings, I., & Fujita, H. (2021). Quantifying individual differences in native and nonnative sentence processing. Applied Psycholinguistics, 42 (3), 579–599. DOI logoGoogle Scholar
Foster, E. D., & Deardorff, A. (2017). Open science framework (osf). Journal of the Medical Library Association, 105 (2). DOI logoGoogle Scholar
Han, J., Kim, J., & Tsukada, K. (2023). Foreign accent in L1 (first language). Linguistic Approaches to Bilingualism. DOI logoGoogle Scholar
Huettig, F., & McQueen, J. M. (2007). The tug of war between phonological, semantic and shape information in language-mediated visual search. Journal of Memory and Language, 57(4), 460–482. DOI logoGoogle Scholar
Ito, A., & Knoeferle, P. (2022). Analysing data from the psycholinguistic visual-world paradigm: Comparison of different analysis methods. Behavior Research Methods. [URL]. DOI logo
Kidd, E., Donnelly, S., & Christiansen, M. H. (2018). Individual differences in language acquisition and processing. Trends in Cognitive Sciences, 22 (2), 154–169. DOI logoGoogle Scholar
Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49 (4), 764–766. DOI logoGoogle Scholar
Marsden, E., Morgan-Short, K., Thompson, S., & Abugaber, D. (2018). Replication in second language research: Narrative and systematic reviews and recommendations for the field. Language Learning, 68 (2), 321–391. DOI logoGoogle Scholar
Matin, E., Shao, K. C., & Boff, K. R. (1993). Saccadic overhead: Information-processing time with and without saccades. Perception & Psychophysics, 53 (4), 372–380. DOI logoGoogle Scholar
McMurray, B. (2023). I’m not sure that curve means what you think it means: Toward a [more] realistic understanding of the role of eye-movement generation in the visual world paradigm. Psychonomic Bulletin & Review, 30 (1), 102–146. DOI logoGoogle Scholar
Milne, A. E., Bianco, R., Poole, K. C., Zhao, S., Oxenham, A. J., Billig, A. J., & Chait, M. (2021). An online headphone screening test based on dichotic pitch. Behavior Research Methods, 53 (4), 1551–1562. DOI logoGoogle Scholar
Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59 (4), 475–494. DOI logoGoogle Scholar
Palan, S., & Schitter, C. (2018). Prolific.ac – a subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17 1, 22–27. DOI logoGoogle Scholar
Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., & Hays, J. (2016). Webgazer: Scalable webcam eye tracking using user interactions. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 3839–3845.Google Scholar
Perpiñán, S. and Montrul, S. (2023). Does your regional variety help you acquire an additional language? Linguistic Approaches to Bilingualism, 13 (5), 663–692. DOI logoGoogle Scholar
Porretta, V., Buchanan, L., & Järvikivi, J. (2020). When processing costs impact predictive processing: The case of foreign-accented speech and accent experience. Attention, Perception, & Psychophysics, 82 (4), 1558–1565. DOI logoGoogle Scholar
Prystauka, Y., Altmann, G. T., & Rothman, J. (2023). Online eye tracking and real-time sentence processing: On opportunities and efficacy for capturing psycholinguistic effects of different magnitudes and diversity. Behavior Research Methods. DOI logoGoogle Scholar
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.Google Scholar
Rodd, J. M. (in press). Moving experimental psychology online: How to obtain high quality data when we can’t see our participants. Journal of Memory and Language, 134 (104472), 104472. DOI logo
Rothman, J., Bayram, F., DeLuca, V., Di Pisa, G., Duñabeitia, J. A., Gharibi, K., … Wulff, S. (2023). Monolingual comparative normativity in bilingualism research is out of “control”: Arguments and alternatives. Applied Psycholinguistics, 44 (3), 316–329. DOI logoGoogle Scholar
Semmelmann, K., & Weigelt, S. (2017). Online webcam-based eye tracking in cognitive science: A first look. Behavior Research Methods, 50 (2), 451–465. DOI logoGoogle Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268 (5217), 1632–1634. DOI logoGoogle Scholar
Vos, M., Minor, S., & Ramchand, G. C. (2022). Comparing infrared and webcam eye tracking in the visual world paradigm. Glossa Psycholinguistics, 1 (1). DOI logoGoogle Scholar
Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59 (10). DOI logoGoogle Scholar
Wickham, H., & Grolemund, G. (2017, January). R for data science: Import, tidy, transform, visualize, and model data (1st ed.). O’Reilly Media. [URL]
Wood, S. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman; Hall/CRC. DOI logoGoogle Scholar